
A Study of Visual Studio Usage in Practice
Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini

Software Technology Group
Technische Universität Darmstadt

Email: {amann,proksch,nadi,mezini}@cs.tu-darmstadt.de

Abstract—Integrated Development Environments (IDEs) pro-
vide a convenient standalone solution that supports developers
during various phases of software development. In order to
provide better support for developers within such IDEs, we need
to understand how much time developers spend using various
parts of a given IDE and how often they use available assistance
tools. To infer useful conclusions, such information should be
gathered for different types of IDEs for different languages.

In this paper, we instrument the previously unexplored Visual
Studio IDE and track the interactions of developers at an industry
partner’s software-development department. As a result, we
capture interactions for more than 6300 hours of work time,
from between 27 and 84 professional C# developers. Our work
reports how much time professional developers spend on activities
such as code editing and execution or navigation, as well as how
often they use assistance tools provided by the IDE. We compare
our findings to those of prior studies involving other IDEs and
discuss the implications of the commonalities and differences for
research on (integrated) developer-assistance tools.

I. INTRODUCTION

Integrated Development Environments (IDEs) are very pop-
ular among software developers since they provide support for
many of their daily development or maintenance tasks. Modern
IDEs provide integrated debuggers, automated refactorings,
assistance tools like code completion, and even integrated
version control. In order to further assist developers and
improve IDEs, we need to understand how developers typically
spend their time in an IDE and which tools they actually use.

Previous studies investigated developers’ use of IDEs [1]–
[3]. Those studies looked at different IDEs (Eclipse and
Pharo) and had a mix of academic, professional, and free-
time developers. To provide better understanding of how IDEs
are used, more large-scale studies with various settings and
different IDEs are needed. In this paper, we provide such a
study that examines how developers use an IDE in an industrial
setting. We focus on an IDE different from those used in
previous studies, namely Microsoft’s Visual Studio IDE (VS).

We perform a case study of how industrial C# developers
use Visual Studio. We developed FEEDBAG, a tool that anony-
mously captures developers’ IDE interactions. We deploy our
tool at an industry partner’s software-development department,
in which more than 400 developers write software in C#.
We collect more than 3.5 million interaction events over a
total of 6,300 work hours. We transform the captured events
into high-level activities such as development, navigation, IDE
configuration, and project management in order to identify
how much time developers spend on each activity. Addition-

ally, we analyze their usage of the tools offered by the IDE.
Specifically, the data we collect allows us to answer:
RQ1 How do developer spend their in-IDE time?
RQ2 Which IDE tools do developers use and how frequently?

By comparing the answers to RQ1 and RQ2 to those from
previous studies on other IDEs, we additionally answer:
RQ3 How does IDE usage differ between IDEs?

From our observations in answering these research ques-
tions, we come up with ideas for next-generation IDEs.

To the best of our knowledge, we present the first large-scale
study with professional C# developers using Visual Studio.
Our analysis shows that our participants spend almost 30% of
their in-IDE time on code editing and execution and another
22% navigating documents and source code. They spend little
time on other activities, like IDE configuration or project
management. Also developers are often inactive for short
intervals (< 5min) while using Visual Studio. We find that the
code completion is by far the most frequently used assistance-
tool, followed by the build system, the debugger, code search
and navigation tools, the quick-fix, and version control. In
contrast, unit-testing tools are rarely used. We compare our
findings to other IDE-user studies and infer a set of actionable
outcomes to drive future research on IDEs. We provide an
online artifact page with supplementary information [4].

In summary, we make the following contributions:
1) An open-source tool, FEEDBAG, designed to anonymously

capture developers’ interactions with Visual Studio.
2) A case study of how professional C# developers use Visual

Studio, involving more than 800 developer days.
3) Comparison of our findings to previous IDE user studies.
4) A discussion of opportunities to advance the research in

IDEs and developer-assistance tools.

II. RELATED WORK

Throughout the paper, we compare our setup and results to
relevant studies that have also looked at developers’ activities
and tool usage. In this section, we introduce such related
studies and compare their overall goals to ours.

General Work Habits: Perry et al. [5] conducted one of
the earlier investigations into how developers spend their time,
using time cards and an observation study. While we also want
to understand how developers spend their time, we focus on
how they spend their time within the IDE. Since we do not
physically observe developers, we cannot (and do not aim to)
come to conclusions about the activities they conduct outside
the IDE (e.g., sending emails or talking to co-workers).

More recent studies include that by González et al. [6] who
looked at how developers multi-task. They introduced the no-
tion of working spheres. LaToza et al. [7] studied developers’
typical tools, activities, and practices based on two surveys
and eleven interviews. Their main goal was to investigate how
developers understand code and keep track of the information
they need. Singer et al. [8] also studied software practices
of software engineers through questionnaires and developer
shadowing. They mainly focused on activity switches and
not on time duration of any of these activities. While all
these studies aim to understand how developers get their tasks
done, and often what they spend their time on, none of them
instrumented the developer’s working environment to precisely
capture the interactions taking place.

IDE Usage: The studies closest to ours are Murphy
et al.’s study [1] on the usage of the Eclipse IDE for Java
and Minelli et al.’s study [2] on the usage of the Pharo
IDE for Smalltalk. Both groups of researchers instrumented
their respective IDEs to track developers’ activities. Our work
expands this space of knowledge by a study on the usage
of Visual Studio for C#. This provides an interesting point
of comparison between the results. A key difference between
our work and both studies is that we focus on professional
developers from industry and do not use any open-source
or student developers as participants. A large-scale study
by Beller et al. [3] reports on developers’ usage of Eclipse
with respect to unit testing. They analyzed how much time
developers spent on editing test and production code. We also
compare our findings to theirs, where applicable. Kersten and
Murphy [9] also study IDE usage, but focus on how their pro-
posed tool, Mylyn, affects developers. Snipes et al. [10] study
how gamification impacts developers’ usage of Visual Studio.
Similar to FEEDBAG, their tool, Blaze, logs IDE interactions.
Additionally, it provides developers with feedback about their
IDE usage. We explicitly avoid this to capture the status quo of
how developers use Visual Studio. Snipes et al. [11] recently
presented a practical guide for IDE-usage studies. We support
the value of such guides, although, unfortunately, as it was
published only after we conducted our study.

Assistance Tools: Other studies specifically look at how
developers use static analysis tools. For example, Johnson et
al. [12] investigated developers’ perception of static analysis
tools and the reasons they might avoid using them. Similarly,
Ayewah et al. [13] used online surveys and questionnaires to
understand how developers use FindBugs. Both studies in-
cluded industrial participants. While we use different research
methodologies and do not focus on static analysis for bug
detection, our findings about tool usage align with the findings
of both studies. However, our work does not investigate why
developers use certain tools versus others.

III. FEEDBAG: CAPTURING DEVELOPER INTERACTIONS

To collect information about interactions of developers with
Visual Studio, we instrument the IDE. We do this through
ReSharper [14] (R#), a widely used Visual Studio extension.
R# is designed as an extensible platform. It provides access

Figure 1: Screenshot of the Event Manager

to a semantic model of the source code under edit, including,
for example, a type-resolved abstract syntax tree.

A. FEEDBAG in a Nutshell

We implement FEEDBAG, a R# plugin that generates inter-
action events and allows users to manage them. FEEDBAG can
be installed from R#’s official extension repository. Although
targeted for our industry partner, FEEDBAG is general enough
for any Visual Studio user and is publicly available [4], [15].

B. Event Generator

The Event Generator hooks into every UI control, ex-
ecutable command, window, and editor in Visual Studio.
Whenever the user interacts with one of these elements, the
generator creates an event and stores it on the user’s machine.
This process does not interfere with IDE functionality. The
generator captures the following information:

Timing: Each event contains the timestamp of its occur-
rence and, if an event takes some time to finish (e.g., when a
build of a project is started), its duration.

Location: Each event contains the active window and –if
available– the active document at the point of its generation.
This allows us to distinguish location-sensitive interactions.

Session: Each event contains a random identifier (ses-
sion Id) that is shared by all events generated by the same
FEEDBAG instance on the same day. This allows us to ana-
lyze interactions at the granularity of developer days without
relating events to individual developers.

Type: Each event has an interaction type and captures
specific information. We distinguish the following four types:

Build: When the user runs a build, we capture the target
projects, the build duration, and whether it succeeds.

Commands: When the user invokes a command, like a native
action (e.g., save file) or an action offered by an extension
(e.g., R#’s quick fixes), we capture that command’s unique Id.

Documents: When the user opens, edits, saves, or closes
a document, e.g. a source file, we capture which of these
actions she performed and the document’s name. To reduce
the number of edit events, we aggregate edits to the same
document if less than two seconds pass between them. This
results in one aggregated event whose duration is the time that
elapsed between the first and the last aggregated edit.

Windows: When the user opens, closes, or switches between
windows, we capture the window’s title and which of these

actions she performed. We capture the same information for
Visual Studio’s main window, to identify when the user started,
left from, returned to, or closed the IDE.

C. Event Manager

We want FEEDBAG to be comprehensible and controllable
for the user. Therefore, the Event Manager allows her to
manage stored events via the UI shown by Figure 1. She may
delete events, but cannot alter them.

The generated events are stored locally on the developer’s
machine. The developer is regularly informed about how many
events were collected and asked to upload them to our server.
Once she decides to provide the data, the Event Manager
bundles all local events and sends that bundle to our server.
Subsequently, it deletes the local copy of the events.

IV. INVESTIGATING IDE USAGE

We use the data collected by FEEDBAG to investigate
developers’ activities as well as their assistance-tool usage on
a typical day. To prepare both analyses, we split the events
in our dataset by developer day. From the resulting developer
days, we identify both activity intervals and tool usages.

A. Identifying Developer Days

Interaction data of developers is sensitive data. We inten-
tionally designed FEEDBAG not to capture any information
that identifies individual developers. Instead, we use a session
Id to identify events created by one developer during one
calendar day. Then, we group sessions that were sent to our
server in a single upload to identify developers. We find that
developers regularly work past midnight, but never between
2 A.M. and 5 A.M. Therefore, we do all subsequent analysis
on developer days, which span from the first event after 3 A.M.
to the end of last event before 3 A.M. the next calendar day.
We refer to the length of a developer day as the work time.

Approximating Participants: For reporting purposes, we
estimate the number of participants from the data FEEDBAG
generates. Since we do not track individual participants, we
cannot report a definitive number, but determine an upper and
a lower bound instead. When a participant uploads multiple
sessions in one bundle, we know they originate from the
same developer. When she uploads them in separate bun-
dles, we have to assume they belong to different developers.
Hence, when we identify developers based on simultaneously
uploaded sessions, we might count multiple developers that
actually correspond to the same participant. Therefore, the
number of developers based on this strategy is an upper bound
to the number of participants. To determine a lower bound, we
merge as many identified developers as possible, as long as no
events from their corresponding developer days overlap. The
number of remaining developers presents a lower bound to the
number of participants in our study.

B. Identifying Activity Intervals

We derive activities from the low-level events captured by
FEEDBAG (e.g. mouse clicks and key presses that occur within

the IDE). To analyze how developers spend their time, we
want an unambiguous mapping from events to activities. The
first and second author created such a taxonomy of activities
following an open-coding approach. First, they each separately
created a mapping from events to at least one activity they
defined adhocly. During the process, they considered the event
category, the target window for window switching, and the
command Id for command executions. Second, they merged
their mappings by joining all activities either of them assigned
to each event. Third, they removed duplicated activities, uni-
fying activity names where necessary. Fourth, they found a
single, more abstract activity for each event that was mapped
to multiple activities and assigned this new activity also to
every event previously assigned to either one of the more
specific activities. They iterated through the last step until each
event was mapped to a single activity. The complete mapping
scheme can be found on our artifact page. At the end of this
process we had the following taxonomy of activities:

Code Editing & Execution: Includes editing of docu-
ments; using automated refactorings, code generation, or find
& replace; adding, renaming, and removing files, projects, or
solutions; building projects; and using the debugger.

Navigation: Includes opening and closing documents;
using searches, both textual and code specific (e.g., find
usages); using arrow or position keys; and using bookmarks.

IDE Configuration: Includes opening, closing, or mov-
ing around windows; changing window settings, selecting
filters in view, or configuring columns shown in a table; and
opening dialogs (e.g., IDE options or file properties).

Project Management: Includes managing issues, tasks,
or requirements; and working with source control.

Other: Includes all remaining interactions, which we
could not group into any larger meaningful activities (e.g.,
activating FEEDBAG-related windows, the Visual Studio com-
mand shell, the Tips & Tricks window, or the start page).

Inactivity: Denotes phases where the IDE has focus, but
no interaction occurs. We do not consider mouse movement
as an interaction. While it may indicate activity, such as read-
ing code, previous work has shown that developers perform
isolated mouse movements for less than 4% of their time [2].
Therefore, we expect the impact on the time budget to be
small. We also note that our notion of activity and inactivity
does not equal nor necessarily correlate with developers work-
ing or not working. Since we only capture interaction within
the IDE, we cannot account for other work activities, such as
meetings, phone calls, discussion, and the like. It is neither our
claim nor our goal to report on how much developers work.

We implemented a framework that groups events by de-
veloper day, orders them by timestamp, and iterates over
them. The algorithm for computing activity intervals from the
resulting event streams is shown in Figure 2. For each event,
we either create a new interval, if none is running (Line 4),
stop the current interval, if the user left the IDE (Line 7), or
do both, if the current activity has changed (Lines 9 and 10).
Intervals time out, when no event occurs for some time. Each

1 onEvent(Event e):
2 cancel timeout
3

4 if (no currentInterval)
5 openInterval at start(e) with activity(e)
6 else if (activity(e) == "Left IDE")
7 close currentInterval at end(e)
8 else if (activity(e) != currentActivity)
9 close currentInterval at end(e)
10 openInterval at start(e) with activity(e)
11

12 timeout 15 seconds after end(e)
13

14 onTimeout(Timestamp t):
15 close currentInterval at t
16 startInterval at t with "Inactivity"
17

18 onEndOfDeveloperDay:
19 if (exists currentInterval)
20 remove currentInterval

Figure 2: Activity-Interval Detection

new event cancels the active timeout (Line 2) and sets a new
one, which ends 15 seconds after the event ends (Line 12). If
this timeout is reached, we end the current interval and start
an inactivity interval (Lines 15 and 16). If the developer leaves
the IDE open overnight, the developer day ends with a running
Inactivity interval. In this case, we delete that interval (Line
20), which leads to the same activity stream we would get if
she had closed the IDE directly after her last activity.

Finally, to compute a developer’s time budget, we sum the
durations of intervals per activity and for Inactivity.

C. Identifying Assistance-Tool Usage

In Visual Studio, assistance tools are used via commands
invocation. Our interaction events tell us which commands
developer use. Before we analyze tool usages, we reduce noise
in the respective set of command Ids:

Simple Keystrokes: We remove editing keystrokes, such
as the arrow keys, enter, backspace, or delete, because -similar
to character strokes during typing, which are also excluded-
they do not represent special command behavior.

Equivalents: We find that commands are not consistently
reused throughout Visual Studio, e.g., selecting Close from
the file menu has a different command Id than closing the
document using a key binding or via the x-button on the top
of the document. Fortunately, such commands often result in a
specific sequence of other events. For example, when closing a
document, we also see a document-close event and a window-
close event. We derive a mapping of equivalent commands
by analyzing sequences of commands that follow one another
within up to 100ms and group all such micro-sequences with
a common suffix. The mapping was manually reviewed and
then used to reduce equivalent commands Ids to a single
one. Murphy et al. [1] encountered similar problems when
analyzing command usage in Eclipse. They also manually
created a mapping between command Ids to merge equivalents.
We support their plea to IDE developers to consistently use
command identifiers to simplify analytical work.

1 onStartOfDeveloperDay:
2 lastTool = "None"
3

4 onEvent(CommandEvent ce):
5 if (lastTool != tool(ce)
6 && tool(ce) != "IDE Core")
7 increment usages of tool(ce)
8 lastTool = tool(ce)

Figure 3: Assistance-Tool-Usage Detection

Duplicates: Some interactions trigger multiple com-
mands, because extensions like R# install own commands for
the same interaction. Both the original Visual Studio command
and the R#-equivalent appear in our statistics. We mine com-
mands that co-occur within 100ms, assuming that it is unlikely
for a developer to actually invoke multiple commands in such
a short time. From the results, we manually create a mapping
of command pairs and use it to filter duplicates.

Then we identify tool usage frequencies in three steps:
First, we manually create an exhaustive mapping from com-

mands to tools. The mapping is based on our understanding of
the command’s functionality, usually obvious from its name.
There are two special tool categories in the mapping: IDE
core and Misc. The first includes commands that constitute
IDE core functionality, such as copy and paste or file open,
close, and save. The second includes commands that we could
not identify, because the command gave no clue as to which
tool it supports. The mapping is available on our artifact page.

Second, we traverse the event streams of our developer days
to compute tool usages as shown in Figure 3. At the beginning
of each developer day, we reset the last tool used (Line 2). We
then process all command events and increment a tool count
the first time the developer switches to it from a previous tool
(Line 7). We ignore all interactions with IDE Core.

Third, we rank the assistance tools by the average number
of usages per developer day. Note that this ranking favors
tools whose usages span longer time periods and encompass
multiple invocations of related commands. For example, while
using code completion happens almost instantaneous with
a single command, using the debugger often takes several
minutes and various commands. This increases the chances of
the developer using other tools during a debugging session. If
the developer starts the debugger, steps a few times, then uses a
search to look up some code, and afterwards continues to step,
we would count two usages of the debugger (even though it is
technically the same debugging session). We believe that this
calculation methodology reflects the actual impact a tool has
on the developer day. Therefore, we accept this imprecision.

V. INDUSTRIAL CASE STUDY

In this section, we describe our industrial case study. We
specifically describe how we used FEEDBAG to collect data
about professional developers’ use of Visual Studio. For pri-
vacy reasons, we cannot name our partner so we will refer to
them as CompanyX throughout the rest of the paper.

A. Company Background

CompanyX develops tax and accounting-related software as
well as in-house software for 50 years. It employs more than
1,600 developers, out of which more than 400 write programs
in C# and use R#. Development projects span from small
training examples to core-business applications.

B. Incremental Rollout

To make sure that FEEDBAG works properly in Compa-
nyX’s settings, we deployed it in multiple steps.

1) Customized Development: We developed the tool in
close collaboration with a single developer from CompanyX.
Therefore, we got early feedback and ensured that technical
requirements are met, according to CompanyX’s environment.

2) Pilot Study: When we deemed the tool production-
ready, two volunteers from CompanyX installed FEEDBAG
as pilot users. Our goal was to ensure correct functionality of
FEEDBAG in many different use cases and also to convince the
management that the study does not interfere with the regular
tasks of the developers. The pilot phase lasted about 2 months,
during which we identified and fixed minor bugs.

3) Company-wide Study: The successful pilot study con-
firmed that FEEDBAG was production-ready. The manage-
ment permitted a large-scale rollout. We prepared extensive
documentation to inform developers about the project and to
motivate why we track their IDE interactions. We also released
FEEDBAG as open-source software so that developers can
check themselves that no personal information is stored. Ad-
ditionally, we provided the Event Manager (see Section III-C)
to give them full control over their data.

We then sent a request for participation to the 400 R# users
at CompanyX. In this email, we introduced the project and
provided instructions. To encourage participation, we promised
them a method-call recommender for their code completion,
similar to our previous work on Java [16], but specifically
trained for their in-house frameworks. We made clear that we
would provide the recommender to all developers, independent
of a contribution to our study. Participants did not receive any
other benefits. All participants installed FEEDBAG voluntarily
and otherwise followed their regular work schedule. They were
not assigned to any special tasks for the study.

During the study, we continually posted project updates
and intermediate results on the mailing list. Additionally, we
attended community events of developer groups at CompanyX
(e.g., Clean Code Community and Software Craftsmanship
Community) to introduce FEEDBAG.

C. Collected Event Dataset

We tracked IDE interactions of developers for about six
months, from mid January to mid July 2015. For the first
two months, we had only our pilot users. In the middle of
March, we started recruiting participants, which quickly raised
their numbers to between 27 and 84 (see Section IV-A). The
resulting dataset encompasses 3,505,858 events, amounting to
over 6,355 hours of work time. From this time, participants
spent about 2,103 hours inside Visual Studio. On average, they

Table I: Statistics on Identified Developers, Sorted by Active Time

Work In-IDE Active Avg. Daily
Dev. # Events # Days Time Time Time Work Time

in hours

D01 198,272 40 344:56 159:40 89:45 8:37
D02 311,293 38 286:18 117:37 75:47 7:32
D03 119,323 17 169:19 70:26 63:08 9:57
D04 150,542 23 196:21 83:06 59:40 8:32
D05 140,438 23 203:38 81:04 55:58 8:51
D06 67,444 18 151:12 74:03 52:44 8:24
D07 294,388 17 131:26 62:21 40:41 7:43
D08 102,696 12 121:11 78:24 40:32 10:05
D09 85,839 20 130:34 51:44 35:51 6:31
D10 153,369 23 181:14 52:52 34:37 7:52
D11 99,351 43 297:32 56:24 34:22 6:55
D12 55,903 32 241:10 47:47 33:40 7:32
. . .
D82 345 1 2:16 0:14 0:10 2:16
D83 434 1 16:28 0:20 0:08 16:28
D84 41 2 2:33 0:08 0:02 1:16

Overall 3,505,858 881 6355:15 2103:25 1302:09 7:12

worked 7 hours and 12 minutes per day. This suggests that
multiple full-time developers participated in our study.

Since we cannot publish our industrial dataset, we started
to collect a second dataset from students and open source
developers that is public and reusable by other researchers.
However, since this dataset is still small, the statistics reported
in this paper are only based on the industrial data.

D. Statistics on Identified Developers

While we base our analysis on developer days to be precise,
we show statistics about the identified developers in Table I.
The first column shows an identifier for the developer. The
second and third columns show the number of events and days
from her. The fourth column shows her total work time. The
fifth column shows the time spent in Visual Studio, i.e., the
work time minus the time any application other than Visual
Studio had the application focus. The sixth column shows the
active interaction time, i.e., the in-IDE time minus the time
in which we record no interactions with the IDE. The last
column shows the average work time per day. The full table
is available on our artifact page.

E. Statistics on Tool Commands

From all developer days, we recorded usages of 2,493
different commands. After noise reduction, 1,346 unique com-
mands remain. In a manual inspection, we found no further
equivalents or duplicates.

VI. DEVELOPERS’ USE OF VISUAL STUDIO

We analyze two aspects of developers’ use of Visual Studio:
their time budget (i.e., how much time they spend on each ac-
tivity) and their tool usage (i.e., frequency of use of IDE tools).
We report on both aspects and also compare to similar studies
performed on different IDEs or in non-industrial settings.

For all subsequent consideration, we exclude developer days
with less than 30 minutes of activity time. This leaves us
with 588 developer days, accumulating 5021 hours of work
time and 1255 hours of active IDE interaction. For these

Outside IDE

Inside IDE

Active IDE
Interaction

(25 %)

Outside IDE
(39.8 %)

Long
Inactivity
(20.2 %)

Short
Inactivity

(15 %)

Code Editing
&

Execution
(28.5 %)

Navigation
(22.4 %)

Short Inactivity
(37.6 %)

Other
(5.3 %)

Building
(0.9 %)

Project Management
(1.8 %)

IDE Configuration
(3.5 %)

(a) (b)
Figure 4: A Developer’s Time Budget

developer days, the average daily work time is 8 hours and 32
minutes. Figure 4 shows the average time budget of all such
developer days. Figure 4a shows the overall time budget, while
Figure 4b zooms in on the in-IDE time. Subsequently, when
we talk about a developer, we refer to the average developer
represented by this time budget.

The remainder of this section proceeds as follows: First, we
present a high-level overview of a developer’s working day.
Second, we discuss her activities in the IDE. Third, we present
a detailed analysis of her IDE-tool usage.

A. A Developer’s Work Day

Outside the IDE: Based on Figure 4a, a developer spends
39.8% (3h24m) of her daily work time with the application
focus away from the IDE. Since FEEDBAG does not track
interactions during this time, we cannot differentiate between
times where she does not interact with her machine from those
in which she uses other applications (e.g., a browser or email
client). A study by LaToza et al. [7] reports that developers
indeed use many applications besides their IDE.

O1: Developers spend a considerable amount of time outside
the IDE, potentially using external tools for their work.

Inactivity: For a total of 35.2% (3h) of her day, a
developer is within the IDE, but does not interact with it (sum
of long inactivity and short inactivity in Figure 4a). We see
two kinds of (causes for) inactivities:
1) The developer is interrupted in her work, e.g., by a phone

call, a colleague, a meeting, or the lunch break. Note that
the application focus does not change, if the workstation
is locked or the screensaver activates, which is why times
during which the developer is actual away may appear as
in-IDE inactivity in our statistics. Developers face many
such (unplanned) interruptions of their work [5], [17].

2) The developer stops interaction to, e.g., read some code,
think, or take a sip of her coffee. In such cases, we record
inactivity, but the developer incurs no context switch.

Note that at the time of this study, FEEDBAG did not track
mouse movements and scrolling. Such information might help

00%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20

Pe
rc

en
ta

ge
 A

ss
ig

ne
d

to
Sh

or
t I

na
ct

iv
ity

Long-Inactivity Threshold t (min)

Interval	
 Ra+o	
 Time	
 Ra+o	

Figure 5: The Effect of the Threshold t on the Split of Inactivity

to partially separate code reading and maybe even thinking
(assuming occasional mouse movement) from actual inactivity.
However, Minelli at al. [2] report that isolated mouse move-
ments make up for only 3.5% of a developer’s in-IDE time,
indicating that this does affect our time budget much.

O2: Developers spent a third of their in-IDE time not
interacting with the IDE.

Since we cannot directly determine the kind of inactivity
from our events, we heuristically separate inactivity intervals
by their duration, reasoning that longer inactivity is more
likely to be an actual interruption of a developer’s work in
the IDE. We separate short inactivity from long inactivity
using a threshold t. Figure 5 shows the effect of t on the
percentage of inactivities and the total inactivity time that
would be considered as short inactivity. We see a relatively
small number of inactivities that last for more than a couple
of minutes. In fact, 85% of all inactivities are shorter than 1
minute, while 97% are shorter than 5 minutes. At the same
time, we see that the inactivities below 1 minute make up
for only 15% of the total inactivity time and even those
below 5 minutes for only 36%. In both figures, we observe
the start of a saturation effect at about t = 5 minutes. This
means developers who are inactive for 5 minutes are more
likely to be inactive for even longer. With this threshold, we
find a strong negative correlation between long-inactivity time
and away time (Pearson’s r = −0.71, p = .01), supporting our
theory that long inactivity indicates that the developer left her
machine. Therefore, we subsequently consider all inactivities
of more than 5 minutes as long inactivities and exclude them
from the in-IDE time. Interestingly, Minelli et al. [2] chose the
same threshold to determine when a developer became idle.
However, they do not report how much long-inactivity time
they observe or how they determined their threshold.

During her day, a developer has 153 short inactivities,
with an average duration of about 30 seconds, and 4 long
inactivities, with an average duration of about 23:18 minutes.

O3: Developers have many very short inactivities and very
few long, break-like inactivities.

Active IDE Interaction: Removing the time spent outside
the IDE and both long and short inactivities leaves 25%
(2h08m) of active-interaction time within the IDE. Kersten and
Murphy [9] report a similar daily interaction time of about 2
hours from a diary study with six senior IBM developers. For
our participants, this time is fragmented into 158 continuous-
interaction periods (i.e., periods with no inactivity whatsoever)
with an average duration of about 49 seconds.

B. What a Developer Does in Visual Studio

Figure 4b zooms in on how a developer spends her in-IDE
time. Subsequent statistics consider this time only.

Short Inactivity: About 38% of a developer’s in-IDE
time consists of short inactivities. Recall that short inactivities
are those with a duration of up to 5 minutes. The average
duration of such inactivities is 30 seconds. A study by Minelli
et al. [2] reports that 66% of their participants’ in-IDE time
is short inactivities. Possible causes for this big difference
between their and our results include the work settings (in-
dustrial developer at work vs. Open Source developers in
their free time), the IDEs (Visual Studio vs. Pharo), and the
programming languages (C# vs. Smalltalk).

O4: The total short-inactivity time for Visual Studio users
varies significantly from that of Pharo IDE users.

Code Editing & Execution: A C# developer in Visual
Studio spends 28.5% of her time on code editing and ex-
ecution. Minelli et al. [2] report that Smalltalk developers
in Pharo spend a mere 5.8% of their time on comparable
activities, while Beller et al. [3] report that Java developers
in Eclipse already spend 30.5% of their time on only editing.
We imagine that reasons for these huge differences include
the programming language (C# vs. Smalltalk vs. Java), the
study participants (e.g., experienced programmers vs. novices),
the project lifecycle stage (e.g., development vs. maintenance),
and the IDE UI concept (perspectives vs. floating windows).

O5: The reported times for code editing and execution varies
significantly between Pharo, Eclipse, and Visual Studio users.

Interestingly, there is a strong correlation between the time
for code editing and execution and the average duration of
continuous-interaction periods per developer day (Pearson’s
r = .69, p = .01). This indicates that developers who are less
frequently interrupted spend more time on code editing and
execution or that focused developers are less likely to get
interrupted. There is no significant correlation between the
average duration of continuous-interaction periods and the
time spent on any other activity.

O6: The average continuous-interaction time and the time for
code editing and execution are strongly correlated.

Navigation: For about 22.4% of her time, a developer
navigates the code base. Surprisingly, we find only a weak
correlation between navigation and code editing and execution
(Pearson’s r = .2, p = .01). This suggests that navigation is
not necessarily a means to reach code with the intention

of editing or executing it. A developer might navigate a lot
without editing much and edit much without navigating a
lot. On the other hand, it is interesting to see that there
is a strong correlation between navigation and the number
of short inactivities (Pearson’s r = .9, p = .01). We see two
possible explanations for this: Either inactivities happen when
the developer becomes unsure about some property of the
codebase, which she then navigates to look up, or while navi-
gating the codebase she regularly stops to read and understand.
Both alternatives suggest that the amount of navigation may
correlate with the need for code understanding.

O7: The amount of navigation is a likely indicator of the
need for code understanding.

IDE Configuration: A developer spends 3.5% of her in-
IDE time on configuring Visual Studio. In comparison, Minelli
et al. [2] report that their participants spend almost 15% of
in-IDE time fiddling with Pharo’s UI. We speculate that this
large difference might, in part, be caused by the different
UI concepts of Visual Studio and Pharo. In Pharo, windows
can be arranged independently and may overlap. In Visual
Studio, windows are embedded into areas of the main window
(perspective) and resizing one window automatically adjusts
other windows such that they never overlap. Moreover, Visual
Studio maintains and automatically switches between separate
perspectives for debug and design mode, saving the need for
rearrangement. The additional freedom provided by Pharo may
result in developers spending more time on UI fiddling and
configuration, to reach the perfect setup and layout for the
(current) needs.

If we look at identified developers, the averages for Visual
Studio configuration range from 0.4% to 21.9%. In compari-
son, Minelli et al. [2] report that their participants spent from
4% to as much as 30% of their time fiddling with Pharo’s UI.
A reason for the consistent high variance could be different
experience of developers with the IDE.

O8: The time spent on IDE configuration varies significantly
between Visual Studio and Pharo as well as between indi-
vidual developers of each IDE.

Project Management: A developer spends only 1.8%
of her time on project management. We know that Com-
panyX mandates Microsoft’s Team Foundation Server (TFS)
as the task management and versioning system. TFS is fully
integrated into Visual Studio. Nevertheless, developers could
choose to use IDE-external tools, like a standalone TFS client,
over the integration, e.g., because of its specialized interface.

O9: Developers spend little time using the IDE-integrated
project-management tools.

Building: A developer spends 0.9% of her time waiting
for builds. Note that this includes only the time from the start
of the build to the developer’s next interaction. We find that
the total build times are about four times larger. This supports
our intuition that developers continue working during builds.

Table II: Top 10 Commands, Sorted by Absolute Usage Frequency

Rank Command Frequency Usage

1 CodeCompletion 63,885 19.7%
2 Debug.StepOver 41,294 12.8%
3 Edit.Paste 25,840 8,0%
4 Debug.Start 23,563 7,3%
5 Edit.Copy 17,558 5,4%
6 File.SaveSelectedItem 14,417 4,5%
7 Window.NextDocumentWindowNav 7,223 2,2%
8 QueryResultsMaxRows 7,220 2,2%
9 AltEnter 6,649 2,1%

10 Build.BuildSolution 5,586 1,7%
. . .

Table III: Top 10 Assistance Tools, Sorted by Usages per Dev. Day

Dev. Days Usages per Usages per
Rank Assistance-Tool with Usage Dev. Day Usage Day

1 Code Completion 511 (87%) 78.8 90.5
2 Build System 546 (93%) 13.4 14.4
3 Debugger 520 (89%) 12.8 14.4
4 Textual Search 521 (89%) 7.7 8.6
5 AltEnter 403 (69%) 7.7 11.2
6 Code Search 486 (83%) 7.1 8.6
7 Version Control 521 (89%) 6.4 7.2
8 (Un)Comment Code 308 (52%) 2.3 4.5
9 Unit Testing 158 (27%) 1.9 7.0

10 Data Tools 50 (9%) 1.7 20.3

O10: Developers continue working while builds run in the
background.

Other Activities: Only 5.3% of a developer’s in-IDE time
is spent outside of the above activities. To determine our high-
level overview of a developer’s activities, we consider this
fraction small enough to spend no more effort on assigning
these interactions to our activities or come up with new ones.

C. How a Developer Uses Visual Studio’s Tools

Before we analyze tool usage in Visual Studio, we look at
the usage of individual commands. Table II show the top 10
commands by absolute usage frequency. We find that our top
10 commands for Visual Studio are very similar to the top 10
Murphy et al. [1] report for Eclipse. The commands printed
in bold font in Table II appear in both lists. Apart from these,
their top 10 includes only simple keystrokes, which our noise
reduction filters. However, these keystrokes are also among
the most-frequent commands in our unfiltered list.

Next, we analyze how developers use Visual Studio’s as-
sistance tools. Table III shows the top 10 tools. The full
list is available on our artifact page. Note that this list does
not contain Visual Studio’s code editor, since we consider
it a core feature of the IDE. This might be different for
IDEs with different editing concepts. Subsequently, we discuss
those tools we can make interesting observations about. We
present usage frequencies as tuples (D,I), with D being the
percentage of developer days the tool is used on and I being
the average number of interactions per developer day.

Code Completion: The code completion is by far the
most frequently used tool in Visual Studio (87%,78.8). Note,
however, that Visual Studio’s code completion opens auto-
matically, whenever the developer starts typing. This usage
frequency, therefore, represents an upper bound to the number

of explicit triggers. Developers possibly ignore the suggestions
provided by this automatic tool. To examine this more closely,
we compute the frequency of code completion usages where
the developer selected a proposal. This gives us a usage
frequency of (80%,69.5), which still ranks code completion
as the most-frequently-used tool. When we consider only the
manual invocations of code completion, the usage frequency is
(54%,3.7), which would still rank the tool 7th. This matches
the results of Murphy et al. [1] who report that Eclipse’s
Content Assist is used about as frequently as standard editing
commands like copy and paste. Since Eclipse’s content assist
opens only when the developer explicitly invokes it or when
she types a dot, we believe that their numbers more accurately
reflect the intentional usages. Unfortunately, we cannot com-
pare usage frequency between IDEs, because Murphy et al.
report only a relative frequency to other commands.

O11: Code completion is the most frequently used tool.

Debugger: The debugger is the third most frequently
used tool in Visual Studio (89%,12.8). This is in line with the
observations of Murphy et al. [1] who report Debug.Step
among the top 10 most-frequently-used commands in Eclipse.
In contrast, Meyer et al. [17] find industrial developers to only
spend 3.9% of their time debugging.

Searches: We find that both textual search (89%,7.7)
and code search (83%,7.1) are very frequently used. Code
search groups specialized searches, e.g., for usages or decla-
rations. Singer et al. [8] make the same observation.

O12: Searches are frequently used to navigate the codebase.

Quick Fix: R#’s quick-fix mechanism AltEnter is the
5th-frequently used tool (69%,7.7). AltEnter offers a context-
specific set of simple refactorings when the developer presses
Alt + Enter. The three most often applied refactorings are
Organize Imports, which removes unnecessary imports,
Change Name Fix, which changes a name to match a
naming convention, and Use Var Fix, which replaces a
type name by C#’s var keyword. This aligns with the findings
of Johnson et al. [12] who report that developers adore quick
fixes that automatically resolve code or style problems.

O13: Developers very frequently use R#’s quick-fix tool.

Version Control: A developer frequently interacts with
the version control via Visual Studio’s TFS integration
(89%,6.4). Moreover, she uses version control consistently,
i.e., on 89% of all developer days. The only tool she uses more
consistently is the build system. Since a developer spends little
time on project management (O9), we conclude that the TFS
integration supports her effectively in her regular usages.

O14: Developers interact with the integrated version control
multiple times on almost every day.

Unit Testing: Testing is considered one of the main ac-
tivities accompanying software development [18]. We find that
the unit-testing component of R# is the 9th most frequently
used tool (27%,1.9). However, it is used on little more than

a fourth of all developer days. This aligns with the findings
of Beller et al. [3] who report that the majority of participants
in their study do not actively practice unit testing.

A caveat to this finding is that some of the developers
at CompanyX use NCrunch [19], an automated concurrent
testing tool for Visual Studio. NCrunch detects and runs tests
that exercise code changes automatically, thus, requires no
explicit interaction once set up. The test results are shown
in the editor, when a test class is open, and in a dedicated
window. To estimate how many developers use NCrunch, we
count how many identified developers either interact with an
NCrunch results window or execute an NCrunch configuration
command. We identify 9 such developers with occurrences on
a total of 21 developer days. We deduce that the number of
developers actively using NCrunch is small.

VII. TOWARDS NEXT-GENERATION IDES

The observations we make during our study highlight inter-
esting questions about IDE design. In this section, we discuss
research opportunities that can answer these questions and
present possible ways to investigate them further.

A. To Integrate or Not to Integrate?

Developers spend a considerable amount of time outside of
the IDE (O1). It is likely that, during this time, they use IDE-
external tools for their work. Indeed, LaToza et al. [7] report
that developers frequently use external tools. With several
plugins available for most modern IDEs, many toolchains are
now integrated into the IDE. However, it is unclear when such
integration is effective and why certain tools are (not) used.

In their survey, LaToza et al. [7] find that tool usage often
correlates with developer preferences. We know, however,
that there are other factors that influence toolchains, like
CompanyX’s policy to use TFS. In this case, we observed
that developers use Visual Studio’s integrated client (O14). We
assume that the reason for this is the efficiency the integrated
solution (O9). That is, both policy and efficiency may be
criteria for choosing a particular (integrated) tool.

To find out more about the criteria that guide tool choices,
we could extend FEEDBAG to capture the window name of the
currently focused application and whether or not interactions
occur. We could then generate a personalized survey to ask
developers for their reasons to use the observed tools and their
satisfaction in using them. Such a study would give valuable
insight into which tools developers use and why. It would also
help in identifying problems with developers’ toolchains, and
whether additional integrated IDE support can overcome them.

From the tools Visual Studio already provides, develop-
ers very frequently use code completion (O11) and quick
fixes (O13). Both tools are provided through a comparatively
simple-to-use dropdown that offers context-sensitive propos-
als. Nevertheless, we find that code completion is used much
more frequently and on many more developer days than
quick fix. One major difference we see between the tools is
that code completion automatically opens on writing, while
the quick fix requires an invocation by the developer. This

aligns with the findings of Johnson et al. [12] that automation
and workflow integration of tools are major factors for tool
adoption. It obviously does not make sense for all tools, e.g.
for automated refactorings, to open automatically. However,
a profound understanding of how integrated-tool presentation
impacts adoption would be valuable for IDE designers.

B. Why Are Developers Inactive?

Developers spend a third of their in-IDE time not interacting
with the IDE (O2). Besides a few longer breaks, we observe
that many short inactivities (O3) heavily fragment their activ-
ities. Although we cannot say whether such fragmentation is
problematic, we find that the duration of continuous activity
strongly correlates with time spent on code editing and execu-
tion (O6). Thus, eliminating the reasons for short inactivities
might increase developer productivity.

Minelli et al. [2] assume that short inactivities occur when
the developer has to understand code. Our data and intuition
tell us there are additional reasons, like when she is waiting for
a test run to finish. Since we only track IDE interactions, we
cannot generally identify why a developer becomes inactive.
However, we believe that we can derive inactivity reasons, to
some extend, from the activities surrounding the inactivity.
A first experiment, analyzing which individual commands
frequently precede short inactivities, did not lead to interest-
ing findings. However, mining for larger interaction patterns
might. This would help to refine our understanding of the time
developers spend on program understanding. It could also help
identify when developers often wait for the IDE to finish some
task, thereby guiding IDE designers towards bottlenecks.

A common approach to mitigate the impact of long-running
tasks, such as builds or static analyses, on developers is to run
them in the background. This strategy seems successful since
we find, for example, that developers do not wait for build
runs (O10). However, previous studies show that expensive
background computations, such as static analyses or builds,
often slow down a developer’s work in the IDE or make her
digress [12], [17]. To investigate such impacts, we would, first,
identify which interactions trigger long-running background
tasks and, second, analyze which kinds of interactions happen
while such tasks are running. We could then identify develop-
ers’ reactions to certain tasks, like switching away form the
IDE, or the impact of tasks, like slowing down interactions.

C. What Causes Usage Differences between IDEs?

General aspects of IDE usage, such as the time spent on
code editing and execution, on IDE configuration, or in short
inactivities vary significantly between different IDEs (O5, O8,
and O4). To enable the understanding of how project nature
and developers influence these aspects, we incorporated a
respective questionnaire into the new version of FEEDBAG.
We also hypothesize that the difference in the time spent
on IDE configuration between Minelli et al.’s study [2] and
ours might be partially caused by the different UI concept of
Visual Studio and the Pharo IDE. Exploration of such usability
indicators could guide IDE designers in creating future IDEs.

D. Why Do Developer Navigate the Codebase?

The frequent usage of search tools (O12) indicates that
developers often need to navigate the codebase. Due to the
strong correlation between navigation time and the number
of short inactivities, we hypothesize that the amount of
navigation may be an indicator for a developer’s need for
code understanding (O7). It would be interesting to explore
this hypothesis with additional datasets, especially from other
IDEs, to encourage better support for code understanding, e.g.,
using documentation miners [20] or example providers [21].

E. Should IDEs Distinguish Developer Persona?

The amount of time spent on IDE configuration varies
significantly between developers (O8). A reason for this may
be a developer’s familiarity with the IDE. It would be inter-
esting to see if future studies on various IDEs confirm such a
correlation. If so, then IDE designers could use configuration
time as a metric to provide specific support to new IDE users.
Another reason for the observed variation in IDE configuration
time might be the kind of tasks a developer performs, e.g.,
testing versus feature development. This information could
also be used to personalize IDEs for different developer roles.

VIII. THREATS TO VALIDITY

Internal Validity: It is possible that FEEDBAG fails
to track some interactions, which would lead us to false
conclusions, especially about inactivities of developers. To
mitigate this risk, we performed our own pilot phase of over
six months with two of the authors and six students. During
this time, we repeatedly analyzed the tracked interactions and
improved both the correctness and completeness of FEEDBAG.

One threat to our conclusions is that we did not conduct
interviews with our participants to verify our interpretation of
the data. It is also possible that some developers behaved dif-
ferently while using FEEDBAG, to better present themselves.
However, since they were aware that the collected data is
completely anonymous and that, legally, their managers cannot
access it, we believe that it is very unlikely that their behavior
was “staged” over the six months of data gathering.

Construct Validity: One threat to the statistics we collect
is that we do not know the exact number of participants in our
study, because we were not allowed to uniquely identify them.
Privacy laws are very strict in Germany, and it took us the
better part of a year to discuss our intents and our tool with
the privacy council. To overcome this, we present a lower and
upper bound to the number of participants in our study, but
perform all our analyses on developer days. While we cannot
state conclusions about individual developers, we can safely
analyze what a typical workday for a developer looks like.
For future studies, we are currently working on integrating a
questionnaire into FEEDBAG that will track information such
as the years of development experience and attach it to each
upload. Unfortunately, we could not get this feature admitted
by the privacy council in time for this study.

FEEDBAG allows participants to delete (parts of) the
recorded sessions before uploading it to our servers. It is

possible that the large amount of inactivity is due to partic-
ipants making heavy use of this feature. However, we doubt
that developers would go through the hassle of deleting many
individual events. It is much more likely that they delete an
entire day, should they be unwilling to share information about
larger parts of it. Therefore, we assume that the days we
received events for are close to complete.

External Validity: We conducted our study in a single
company; our results may not generalize beyond that. To
validate our findings, we started a complementary study with
Open Source developers. Additionally, we track only IDE
interactions for C# developers in Visual Studio. It is possible
that the observations we make do not generalize to developers
using other programming languages or IDEs. However, we
believe that our results help in reasoning about differences
between languages and tools, and we already compare our
results to similar studies performed with other IDEs [1]–[3].

Since we do not know the experience level and roles of our
participants, it might be the case that most of our participants
fall into one experience level, for example. However, we
believe that the large number of (measured) participants and
the diverse project portfolio of CompanyX mitigate this threat
significantly. The many similarities between the behavior of
our participants and behavior reported in other studies [1]–[3],
[7], make us believe that our participants are representative.

IX. CONCLUSIONS

To further improve Integrated Development Environments
(IDEs), we need to understand how developers typically spend
their time in an IDE and which tools they actually use.
Previous studies investigated how developers use Eclipse [1]
and the Pharo IDE [2]. We expand this space of knowledge
by a study on how professional C# developers use Visual
Studio. We presented FEEDBAG, an interaction tracker for
Visual Studio. We use FEEDBAG to capture interactions from
over 800 developer days, representing a total of 6,300 working
hours. We analyze this data to understand how developers
spend their time and which IDE tools they use.

Our findings provide insights for IDE designers on how to
improve future IDEs. Possible opportunities include removing
bottlenecks that slow down or interrupt developers in their
work and creating more code-completion-like or quick-fix-
like mechanisms that quickly and simply support developers
in their workflow. We also find indications that new concepts
for code understanding and exploration might be valuable for
developers. Furthermore, we find indications that the IDE UI
concept might significantly impact developers in their work.

X. ACKNOWLEDGMENTS

We thank our students D. Albrecht, U. Fahrer, M. Kämmerer, S. Kemper,
F. Weirich, and M. Zimmermann for their work on FEEDBAG. Special thanks
to K. Brockmann, A. Fischer, and M. Kutter, our liaisons to CompanyX.

This work was partially funded by the German Federal Ministry of
Education and Research (BMBF) within the Software Campus projects KaVE
and Eko, both grant no. 01IS12054. The authors assume responsibility for the
paper content.

REFERENCES

[1] G. Murphy, M. Kersten, and L. Findlater, “How Are Java Software
Developers Using the Elipse IDE?” IEEE Software, vol. 23, no. 4,
2006. [Online]. Available: http://dx.doi.org/10.1109/MS.2006.105

[2] R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did
Last Summer – An Investigation of How Developers Spend Their
Time,” in Proceedings of the International Conference on Program
Comprehension, ICPC ’15. IEEE Press, 2015, pp. 25–35. [Online].
Available: http://dl.acm.org/citation.cfm?id=2820282.2820289

[3] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When,
How, and Why Developers (Do Not) Test in Their IDEs,” in
Proceedings of the Joint Meeting on Foundations of Software
Engineering, ESEC/FSE ’15, 2015, pp. 179–190. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786843

[4] “A Study of Visual Studio Usage in Practice – Online Artifact,”
http://www.st.informatik.tu-darmstadt.de/artifacts/vs-in-practice/.

[5] D. Perry, N. Staudenmayer, and L. Votta, “People, Organizations, and
Process Improvement,” IEEE Software, vol. 11, no. 4, pp. 36–45, 1994.
[Online]. Available: http://dx.doi.org/10.1109/52.300082

[6] V. M. González and G. Mark, “”Constant, Constant, Multi-
tasking Craziness”: Managing Multiple Working Spheres,” in
Proceedings of the Conference on Human Factors in Computing
Systems, CHI ’04. ACM, 2004, pp. 113–120. [Online]. Available:
http://doi.acm.org/10.1145/985692.985707

[7] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models:
A Study of Developer Work Habits,” in Proceedings of the International
Conference on Software Engineering, ICSE ’06. ACM, 2006, pp. 492–
501. [Online]. Available: http://doi.acm.org/10.1145/1134285.1134355

[8] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An Examination
of Software Engineering Work Practices,” in Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative
Research, CASCON ’97. IBM Press, 1997, pp. 21–35. [Online].
Available: http://dl.acm.org/citation.cfm?id=782010.782031

[9] M. Kersten and G. C. Murphy, “Mylar: A Degree-of-interest Model
for IDEs,” in Proceedings of the International Conference on Aspect-
oriented Software Development, AOSD ’05. ACM, 2005, pp. 159–168.
[Online]. Available: http://doi.acm.org/10.1145/1052898.1052912

[10] W. Snipes, A. R. Nair, and E. Murphy-Hill, “Experiences Gamifying
Developer Adoption of Practices and Tools,” in Companion Proceedings
of the 36th International Conference on Software Engineering, ICSE
Companion 2014. ACM, 2014, pp. 105–114. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591171

[11] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K. Damevski, A. Nair,
and D. Shepherd, “A Practical Guide to Analyzing IDE Usage Data,” in
The Art and Science of Analyzing Software Data. Morgan Kaufmann,
2015.

[12] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13. IEEE Press, 2013, pp. 672–681. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486877

[13] N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix, and
W. Pugh, “Using Static Analysis to Find Bugs,” IEEE
Software, vol. 25, no. 5, pp. 22–29, 2008. [Online]. Available:
http://dx.doi.org/10.1109/MS.2008.130

[14] “ReSharper,” https://www.jetbrains.com/resharper/. Last checked on
November 13, 2015.

[15] “KaVE Project – Website,” http://kave.cc. Last checked on November
13, 2015.

[16] S. Proksch, J. Lerch, and M. Mezini, “Intelligent Code Comple-
tion with Bayesian Networks,” ACM Transactions on Software En-
gineering and Methodology, to appear, http://www.st.informatik.tu-
darmstadt.de/artifacts/pbn/.

[17] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann,
“Software Developers’ Perceptions of Productivity,” in Proceedings
of the International Symposium on Foundations of Software
Engineering, FSE ’14. ACM, 2014, pp. 19–29. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635892

[18] F. P. Brooks, Jr., The Mythical Man-month (Anniversary Edition).
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[19] “NCrunch,” http://www.ncrunch.net/. Last checked on November 13,
2015.

[20] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and A. Marcus,
“How Can I Use This Method?” in Proceedings of the International
Conference on Software Engineering, ICSE ’15. IEEE Press, 2015, pp.
880–890. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2015.98

[21] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining StackOverflow to Turn the IDE into a Self-confident
Programming Prompter,” in Proceedings of the Working Conference on
Mining Software Repositories, MSR ’14. ACM, 2014, pp. 102–111.
[Online]. Available: http://doi.acm.org/10.1145/2597073.2597077

