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ABSTRACT
In this paper, we present a curated collection of 2833 C#
solutions taken from Github. We encode the data in a new
intermediate representation (IR) that facilitates further anal-
ysis by restricting the complexity of the syntax tree and by
avoiding implicit information. The dataset is intended as a
standardized input for research on recommendation systems
for software engineering, but is also useful in many other
areas that analyze source code.

1. INTRODUCTION
A multitude of source-code-based recommendation sys-

tems for software engineering (RSSE) exist. Examples in-
clude systems for code completion [5], code search [6], or
snippet mining [1]. A recurring challenge for every new RSSE
is to find suitable projects that can be used as input. The re-
cent rise of platforms like Github, Bitbucket, or SourceForge
make it easy to find vast amounts of source code that can
be used for the above research. However, open-source repos-
itories cannot be directly used in analyses, because some
effort is required in order to prepare them, e.g., resolving
dependencies and making them compile. Additionally, it is
necessary to think of how the results of a batch analysis of
many repositories are stored such that it is easy to access
them later in a structured way. In short, using and analyzing
a large number of open-source projects is usually non-trivial.

This paper introduces a dataset that contains the source
code of 360 C# repositories in a simplified form. The dataset
is primarily meant for use in research on source-based RSSE
and to answer questions that target correct usage of applica-
tion programming interfaces (API), but it could also be used
in related areas, e.g., anomaly detection. Instead of spending
time on assembling a dataset and making all sources compile,
researchers can simply use our curated dataset for their re-
search. Reusing an existing dataset has the added benefit of
improving comparability and reproducibility of the results.

Additionally, most research in the field focuses on Java
code. We have observed that there are not many C# datasets
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available. According to the TIOBE index, C# is among the
most commonly used programming languages, so we believe
that it is important to close this gap.

We surveyed a selection of 23 source-based RSSE and de-
signed an intermediate representation (IR) of source code
that contains all the information necessary to satisfy the re-
quirements of the underlying recommender techniques. The
details of the survey are published as an online appendix to
this paper on the artifact page [2].

The IR also provides a means to bridge the gap between
programming languages. While the current dataset contains
only C# code, we designed the IR to support both Java
and C# such that tools can be build once to support both
languages. This also opens the opportunity to study the
effect of programming language on RSSE.

2. DATASET CREATION
A C# repository contains one or more solutions, a C# spe-

cific construct that represents a collection of several related
projects. Our dataset is created from a set of 360 Github
repositories that contain 2833 solutions. We transformed the
source code found in each project into our IR. The dataset
represents more than 42.8M lines of code extracted from
∼360K classes. It contains usages for more then 560 unique
APIs (excluding all versions of the mscorlib, which is always
used), out of which 52 APIs are used in at least 20 different
projects (82 in 10, 123 in 5). The full statistics can be found
on the artifact page.

Project Selection. We used the Github API to automat-
ically find repositories. The number of available repositories
is huge, so we restricted the search to a specific set of com-
monly used API types that were relevant to a recommenda-
tion system we were building. This list of types is included in
our artifact page. We added all returned repositories to our
dataset and transformed the contained solutions. A checkout
script is provided that clones all included repositories.

The solutions contained in the selected repositories cover
a wide variety of project types, including exemplary reposi-
tories that mainly contain tutorials for different parts of an
API, small applications, and large-scale projects with many
committers. The project domains in use are also quite di-
verse. For example, our selection includes web service clients,
applications for machine learning, games, and applications
with a graphical user interface. The selected repositories con-
sist of a diverse mix of project sizes, the artifact page includes
a graphical presentation of the distribution.

Used Tooling. The tool that we built to perform the
transformation is based on ReSharper, a very common plu-



gin for the Visual Studio IDE. In ReSharper, it is possible to
open many different C# project types and resolve external
NuGet dependencies. We implemented a runner that finds
all solutions in a folder, opens them one by one, and then pro-
cesses each API type found in the solution. We then traverse
the abstract syntax tree and perform our transformation.
Our tool is open source and can easily be used by others to
transform additional solutions.

Data Organization. For easier distribution of the dataset,
we combined everything needed into a single downloadable
archive. The archive contains one folder per analyzed reposi-
tory. Each folder contains .zip files, one for each analyzed solu-
tion of the repository. The zip file contains several files where
each file contains the Javascript object notation (JSON) of
each type declaration found in a project of the solution. Our
organization in the file system makes it easy to identify the
Github repository from which this data was created, as well
as the path to the solution file within the repository.

After downloading the above archive file, using the data
is straightforward. We provide bindings in both Java and
C# that can be used to read and write the IR. Additionally,
we provide utility functions that make it easy to find, read,
and write the solution archives. Therefore, dataset users do
not need to handle the file structure of the data themselves.
We also provide code examples that explain how to read the
dataset, traverse the IR with a visitor, access information,
or perform processing steps.

3. DATA REPRESENTATION
The dataset is provided in an IR that we have developed.

It is a simplified version of the original source code that still
contains all information needed in source-based RSSE. Dif-
ferent source-based recommendation systems have a variety
of requirements on the input data. Based on our survey, we
found that a representation that is close to source code works
best. In addition, we designed the IR in a way that makes
it easy to analyze later on. For example, we expand nested
expressions and require explicit references everywhere.

Our intermediate representation consists of two parts. We
first introduce our naming scheme that allows us to uniquely
refer to source-code elements in object-oriented programs.
For example, whenever we refer to a method, the reference
does not only contain the name, but also the declaring type,
the signature of the methods and also versions of all involved
types. We then present the full IR language that encodes type
declarations, including a simplified version of the syntax tree
and information about the involved types.

Naming. Part of our IR is a name representation for
types and members that preserves fully-qualified typing in-
formation. The name grammar is shown in Figure 1. While
the notation is inspired by the extended Backus-Naur-Form
(eBNF), we did not intend the grammar to be usable for the
automatic creation of a parser, but to make it easy for the
reader to understand the data representation. We use “(...)”
to group information and denote multiplicities in the com-
monly used way, i.e., “(...)?” is 0 or 1, “(...)∗” is 0 or more,
and “(...)+” is 1 or more.

The syntax of the naming scheme is driven by the idea to
fully-qualify all identifiers and to encode all typing-related
information about a code element in its name. For example,
as can be seen from the grammar, a type does not only
contain the full namespace information; it also includes the

// basic non-terminals
Id = ... // an arbitrary string
Num = ... // a positive integer value

// types
Type = ‘?’ | <TypeParameter> | <DelegateType> | <ArrayType> |
<RegularType>

TypeParameter = <Id>
...
RegularType = (<TypeQualifier> ‘:’)? <ResolvedType> ‘,’ <Assembly>
TypeQualifier = ‘e’ | ‘i’ | ‘s’ // enum, interface, struct
ResolvedType = (<Namespace>)? <TypeName> (‘+’ <TypeName>)∗
Namespace = (<Id> ‘.’)+
TypeName = <Id> (<GenericPart>)?
GenericPart = ‘”<Num> ‘[’ <GenericParam> (‘,’ <GenericParam>)∗ ‘]’
GenericParam = ‘[’ <TypeParameter> (‘->’ <Type>)? ‘]’
Assembly = <Id> (‘,’ <AssemblyVersion>)?
AssemblyVersion = <Num> ‘.’ <Num> ‘.’ <Num> ‘.’ <Num>

// member names
Member = (‘static ’)? ‘[’ <Type> ‘] [’ <Type> ‘].’ <Id>
Field = <Member>
Method = <Member> <GenericPart> ‘(’ (<Param> (‘,’ <Param>)∗)? ‘)’
Param = (<ParamModifier>)? ‘[’ <Type> ‘]’ <Id>
ParamModifier = ‘opt ’ | ‘out ’ | ‘params ’ | ‘ref ’ | ‘this ’
...

Figure 1: Name Grammar

name of the dependency (assembly), including its version; as
well as information about generic type parameters.

Consider the type “i:data.IList, collections, 1.2.3.4”.
It refers to the IList type defined in the data namespace.
The prefix i: denotes that this is an interface type, other sup-
ported kinds are enums and structs. If the prefix is omitted,
then the type refers to a class. When a type is defined in a
dependency, then both the name of this dependency (in this
case collections) and the version is used. If the referenced
type is instead defined in the current solution, then the name
of enclosing project is used and the version is not set (e.g.,
“T,P”: type T in project P). The notation can also encode
array types and delegate types. Both are omitted for brevity,
but can be found in the full grammar on the artifact page.

We also support types with generic type parameters. Con-
sider the type “T’2[[G1],[G2->T2,P]],P”, which has “’2”
generic type parameters, of which G1 is not bound and G2 is
bound to“T2,P”. Additionally, we also support nested classes.
The example “n.T+NT,P” refers to the class NT nested in T.

This type information is used for other code elements as
well. Our grammar introduces a syntax for member names
and lambda names, but the following examples are restricted
to method names for brevity. A method is represented as
“[RT,P] [DT,P].M()”in our notation. This refers to a method
M that is defined in the type “DT,P”, returns an object of type
“RT,P”, and has no parameters. Method parameters are listed
between the parentheses: ...M([T3,P] p) Like all class mem-
bers, methods can include the static modifier. They can
also contain additional modifiers for parameters.

Full Language. The source code we collect is represented
in our newly developed IR that represents a simplified syntax
tree of the source code. We present a part of the grammar
in Figure 2 that uses the naming scheme as a building block.
The IR is very similar to JSON, so we slightly adapt the
eBNF notation to increase the readability: instead of using
terminals for the curly braces, we use the construct {a:<A>}
to represent an object that has a property a of type A. The
construct <A>∗ is used to express the storage of a collection
of <A>. We leave out some non-terminals for brevity, but
include the full grammar on the artifact page.

The language is designed to capture information about a



single type declaration. The root element is an <IR> node
that contains both the <TypeShape>, a structure that cap-
tures information about the type system, and the simplified
syntax tree of a <TypeDecl>.

In the <TypeShape>, information about the type hier-
archy is stored. This includes references to all extended
classes and implemented interfaces, but also more detailed
information about the methods declared in the class. A
<MethodHierachy> stores the local method name, but cap-
tures the information if a method was overridden and -if so-
which one. A method might be overridden multiple times
in a given type hierarchy. We store the name of the “su-
per” method and the name of the method that originally
introduced the signature.

In the <TypeDecl>, the contents of the class are captured
in a simplified form. The representation is inspired by the
language specification of Java and C#, but provides several
simplifications that make it easier to analyze. The two most
important ideas are that 1) the IR does not allow the nesting
of arbitrary expressions in the syntax tree, it requires the
source-code to be normalized. And 2), it also does not al-
low any implicit information (like optional this references).
This has several implications on the transformation. For ex-
ample, the transformation has to handle nested method calls
like m1(m2()). In this case, our transformation introduces a
temporary variable, assigns the nested invocation m2(), and
passes the variable as a parameter to m1.

The IR also enforces some unification of the source code.
Consider, the example if(isX()).... Some developers want
to assign isX() to a variable first, while others will not. The
IR enforces the former style by only allowing <SimpleExpr>
in conditions, i.e., <ConstantExpr> or <ReferenceExpr>. Note
that this is not possible in loops (e.g., while(isX())...), be-
cause the loop condition is evaluated multiple times. You
could include the condition before the loop and at the end
of the loop, but this would introduce duplication. The IR
avoids this problem by introducing the concept of <Loop-
HeaderBlockExpr>, which can contain multiple statements.

4. HOW TO USE
We now describe how we have made use of the current

dataset as well as how we foresee future researchers using it.

Previous Uses. We have recently used the presented
dataset and our IR to create a platform for modular develop-
ment of source-based recommender systems. The IR allowed
us to build general analysis modules such as a points-to anal-
ysis and an inlining component that are not specific to an
approach and, therefore, easily reusable.

As a use case, we reimplemented an existing recommenda-
tion system that builds on top of the IR [4]. We then used
the described dataset to train the recommender. Using it
provided us easy access to a large number of solutions and
was also a means for creating reproducible results.

Dataset. The dataset and the data format is tailored
to the needs of source-based recommendation systems. Our
dataset as well as future data sets encoded in our new IR
serve as standardized input to build and evaluate RSSE. Our
current data set can be used in a wide range of approaches;
for example, to build intelligent completion engines such as
call or snippet completion, code search engines, anomaly de-
tectors, or simply to gather source code statistics.

However, the data contained in the dataset is very gen-

IR = {typeShape:<TypeShape>, type:<TypeDecl> }
// type shape
TypeShape = {th:<TypeHierarchy> mh:<MethodHierarchy>∗}
TypeHierarchy = {elem:<Type>, extends:(<TypeHierarchy>)?,

implements:<TypeHierarchy>∗}
MethodHierarchy = {elem:<Type>, super:(<Type>)?, first:(<Type>)?}
// declarations
TypeDecl = {events:<EventDecl>∗, fields:<FieldDecl>∗,

methods:<MethodDecl>∗, properties:<PropertyDecl>∗}
FieldDecl = {name:<Field>}
MethodDecl = {name:<Method>, body:<Statement>∗}
...

// statements
Statement = <Block> | <Assignment> | <BreakStmt> | <ContinueStmt> |
<EventSubscriptionStmt> | <ExpressionStmt> | <GotoStmt> |
<LabelStmt> | <ReturnStmt> | <ThrowStmt> | <UnknownStmt> |
<VariableDecl>

Assignment = {ref:<AssignableRef>, expr:<AssignableExpr>}
ExpressionStmt = {expr:<AssignableExpr>}
VariableDecl = {id:<VariableRef>}
...

// blocks
Block = <DoLoop> | <ForEachLoop> | <ForLoop> | <IfElseBlock> |
<LockBlock> | <SwitchBlock> | <TryBlock> | <UncheckedBlock> |
<UnsafeBlock> | <UsingBlock> | <WhileLoop>

IfElseBlock = {cond:<VariableRef>, then:<Statement>∗, else:<Statement>∗}
WhileLoop = {cond:<LoopHeaderExpr>, body:<Statement>∗}
...

// expressions
SimpleExpr = <ConstExpr> | <ReferenceExpr> | <UnknownExpr>
ConstExpr = {value:<Id>}
ReferenceExpr = {ref:<Reference>}
LoopHeaderExpr = <SimpleExpr> | <LoopHeaderBlockExpr>
LoopHeaderBlockExpr = {body:<Statement>∗}
AssignableExpr = <SimpleExpr> | <BinaryExpr> | <CastExpr> |
<CompletionExpr> | <IfElseExpr> | <IndexAccessExpr> |
<InvocationExpr> | <LambdaExpr> | <TypeCheckExpr> | <UnaryExpr>

InvocationExpr = {ref:<VariableRef>, method:<Method>,
parameters:<SimpleExpr>∗}

...

// references
Reference = <AssignableRef> | <MethodRef> | <EventRef>
AssignableRef = <VariableRef> | <IndexAccessRef> | <FieldRef> |
<PropertyRef> | <UnknownRef>

VariableRef = {id:<Id>}
FieldRef = {ref:<VariableRef>, name:<Field>}
...

Figure 2: Excerpt of the IR Grammar

eral and is not limited to RSSE. We believe it is useful for
any research that involves source code, as long as the code
information needed is contained in our IR.

Transformation. The tool we created for the source-code
transformation is open source. Since the tool can analyze
arbitrary solutions that exist locally, researchers can use it
to create their own additional datasets as well

Another use case is researchers integrating our transforma-
tion into their Visual Studio integrated RSSE. They can use
our transformation as a preprocessing step that transforms
the current code under edit into the IR. This solves many
lower-level recurring code analysis tasks such that they can
concentrate on writing more sophisticated analyses on top.

Intermediate Representation. The IR itself is a con-
tribution that could be applied by others to represent source
code. For example, a data set of StackOverflow posts may
need to store code snippets that are part of the post. These
code snippets could be stored in our IR such that the same
analyses and processing tools can be applied on them as on
transformed source code from other sources.

The IR also serves a means to design cross-language anal-
yses that investigate the differences between APIs and their



usages in different programming languages. Having the IR
as common ground opens the possibility to have a single
toolchain to process and evaluate programs originally writ-
ten in different programming languages. We are currently
working on such an IR transformation for Java.

5. EXTENDING THE DATASET
We foresee multiple ways in which the dataset could be

extended or further improved.

Intermediate Representation. The dataset could be
extended by supporting more code elements in the IR. Ex-
amples of this include visibility modifiers, comments, and
attributes. In the same way, the transformation could be
extended to cover more cases. For example, support for the
syntactic sugar of textual C#’s Language-integrated Query
(LINQ) expressions could be added.

Dataset. An obvious way to extend the dataset is to use
more repositories. This could include a larger number of
repositories from Github, as well as from other platforms
such as Bitbucket or SourceForge.

We did not explicitly aim for creating a dataset that is
representative for different factors such as project size, com-
plexity, domain, etc. Thus, future work could introduce a
more structured way of selecting the included repositories
and apply a measure to quantify the representativeness of
the dataset similar to that sketched in our previous work [3].

6. LIMITATIONS
The dataset is meant to be used for research on source-

based RSSE. While we tried to provide a dataset that covers
as many applications as possible, it also has some limitations.

Transformation. Our transformation tool is built on top
of ReSharper. We use this framework to open the solutions
and for the automatic dependency resolution. Unfortunately,
it is restricted to Visual Studio solutions and it does not sup-
port all possible C# project types. This includes for example
solutions that make use of the most recent .NET version or
some Windows Phone projects.

Our transformation works on the ReSharper AST that
contains resolved typing information. We transform many
language constructs into our IR, but supporting the complete
language specification of C# was beyond the scope of our
immediate goals. We prioritized the language constructs and
focused on supporting the most common ones, while ignoring
less-commonly used ones for the time being. For example,
we do not transform the syntactic sugar of textual LINQ
expressions and we currently ignore the contents of unsafe

blocks. Unsupported constructs will be included in the IR as
unknown expressions or unknown statements. We continue
the work on the transformation and plan to support missing
language features with every new release.

Additionally, the IR, by design, makes it necessary to ex-
pand nested expressions in the source code. For example, it
is not possible to nest a method invocation as a parameter of
another method invocation in the IR. While the normaliza-
tion of these cases makes it a lot easier to analyze the code,
the current transformation just assigns nested expressions to
new temporary variables. This might change the semantics
of the code, for example, it breaks short-circuit evaluation.
Please note that this is not a conceptual limitation of the
IR, but simply a matter of engineering effort to improve and

extend the transformation.

Repository Selection. Our current selection of reposi-
tories covers a wide variety of applications and project sizes.
The repositories are only selected from GitHub. Addition-
ally, no meta data is available in the dataset that makes it
possible to select a representative subset of repositories and
no representativeness guarantees exist for the dataset. For
example, it might be that the selected repositories are biased
towards a specific domain or contain more research projects
than industrial open-source projects. However, we believe
that this does not limit the use of the dataset unless the tar-
get research problem explicitly requires an equal distribution
of different domains, project size, etc.

Data Format. We do not include all information of the
original source code in our IR and leave out code elements
that we did not deem required after surveying the 23 RSSE.
For example, this includes visibility modifiers, attributes, or
comments. We found that existing RSSE do not leverage
this information. If future approaches require the presence of
these elements, adding them is only a matter of extending the
grammar and considering the elements in the transformation.

7. CONCLUSION
We presented a dataset containing the source code of 2833

C# solutions taken from Github. The source code of these
solutions is encoded in a newly developed intermediate rep-
resentation that resembles a simplified syntax tree. This IR
facilitates further automated code analysis and we provide
bindings to read and process the dataset in both C# and
Java. The dataset can be used for research on RSSE, like
intelligent code completion, code search, or snippet mining.
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