
Investigating Next Steps in
Static API-Misuse Detection

Sven Amann∗ Hoan Anh Nguyen† Sarah Nadi‡ Tien N. Nguyen§ Mira Mezini¶
∗CQSE GmbH †Amazon.com, Inc ‡University of Alberta §University of Texas-Dallas ¶Technische Universität Darmstadt

research@sven-amann.de hoanamzn@amazon.com nadi@ualberta.ca tien.n.nguyen@utdallas.edu mezini@cs.tu-darmstadt.de

Abstract—Application Programming Interfaces (APIs) often
impose constraints such as call order or preconditions. API mis-
uses, i.e., usages violating these constraints, may cause software
crashes, data-loss, and vulnerabilities. Researchers developed
several approaches to detect API misuses, typically still resulting
in low recall and precision. In this work, we investigate ways
to improve API-misuse detection. We design MUDETECT, an
API-misuse detector that builds on the strengths of existing
detectors and tries to mitigate their weaknesses. MUDETECT
uses a new graph representation of API usages that captures
different types of API misuses and a systematically designed
ranking strategy that effectively improves precision. Evaluation
shows that MUDETECT identifies real-world API misuses with
twice the recall of previous detectors and 2.5x higher precision. It
even achieves almost 4x higher precision and recall, when mining
patterns across projects, rather than from only the target project.

I. INTRODUCTION

Incorrect usages of an Application Programming Interface
(API), or API misuses, are violations of (implicit) usage con-
straints of the API. An example of a usage constraint is having
to check that hasNext() returns true before calling next()

on an Iterator, in order to avoid a NoSuchElementException

at runtime. API misuse is a prevalent cause of software bugs,
crashes, and vulnerabilities [1]–[7].

To mitigate API misuse, researchers have proposed several
API-misuse detectors [1], [8]–[17]. These detectors analyze API
usages, i.e., code snippets that use a given API. The detectors
commonly mine usage patterns, i.e., equivalent API usages that
occur frequently, and then report deviations from these patterns
as potential misuses. Unfortunately, the reported precision of
such detectors is typically low and a recent study [18] showed
that their recall is also very low. Thus, we need better detectors
to address the still-prevalent problem of API misuse [19], [20].

Previous work identified individual as well as common
strengths and weaknesses of existing detectors [18] in an em-
pirical study using the open-source benchmark MUBENCH [21].
In this paper, we investigate whether addressing the reported
weaknesses indeed leads to better performance in practice.
Therefore, we design a new misuse detector, MUDETECT.
MUDETECT encodes API usages as API-Usage Graphs (AUGs),
a comprehensive usage representation that captures different
types of API misuses. MUDETECT employs a greedy, frequent-
subgraph-mining algorithm to mine patterns and a specialized
graph-matching strategy to identify pattern violations. Both
components consider code semantics to improve the overall
detection capabilities. On top, MUDETECT uses an empirically

optimized ranking strategy to effectively rank true positives.
While previous detectors mostly target a per-project setting [18],
MUDETECT also works in a cross-project setting, where it mines
thousands of usage examples from third-party projects.

We assess the precision and recall of MUDETECT and show
that it outperforms the four state-of-the-art detectors evaluated
in prior work [18]. In our evaluation, we extended MUBENCH by
107 real-world misuses identified in a recent study on run-time
verification [19]—more than doubling its size—to ensure that
our design decisions generalize. We show that, in a setting with
perfect training data, MUDETECT achieves a recall of 72.5%,
which is 20.3% higher than the next best detector and over
50% higher than the other detectors. In the typical per-project
setting, MUDETECT achieves recall of 20.9%, which is 10.2%
better than the second-best detector, and precision of 21.9%,
which is 13.1% better than the second-best detector. In a cross-
project setting, MUDETECT’s recall and precision again improve
significantly to 42.2% and 33.0%, respectively. Throughout
the experiments, MUDETECT identified 27 previously unknown
misuses, which we reported in eight pull requests (PRs). To date,
three of the PRs got accepted, demonstrating that MUDETECT

identifies actual issues in current software projects.
To summarize, this paper makes the following contributions:

• AUG, a graph-based representation of API usages that
captures all usage properties relevant for identifying misuses.

• Code-semantic-aware, greedy frequent-subgraph-mining and
graph-matching algorithms to identify patterns within and
across projects and (violating) instances in a target codebase.

• MUDETECT, a (cross-project) misuse detector.
• An empirical study of ranking strategies to improve precision.
• An empirical evaluation that compares MUDETECT to existing

detectors, and includes an analysis of the results to identify
further opportunities for improvement.

• Fixes for all previously unknown misuses identified by
MUDETECT, for external validation of the findings’ relevance.
We publish our MUBENCH extension, MUDETECT’s imple-

mentation, and all experiment data, tooling, and results [22].

II. STATE OF THE ART AND IMPROVEMENT STRATEGIES

Our work focuses on static API-misuse detection in Java.
In the following, we first briefly introduce the state-of-the-art
detectors that were empirically evaluated by Amann et al. [18].
Subsequently, we summarize the problems that their study
revealed with these detectors and outline how we mitigate
them. The detectors work as follows.

GROUMINER [12] represents usages as directed acyclic
graphs that encode method calls, field accesses, and control
structures as nodes and control-/data-flow dependencies among
them as unlabelled edges. GROUMINER uses sub-graph mining
to find patterns and then detects violations of these patterns as
missing nodes. It detects missing method calls and misplaced
method calls, as well as missing control structures.

JADET [10] encodes the transitive closure of the call-order
relation in each usage as pairs of the form m()≺n(). It uses
Formal Concept Analysis [23] to identify violations, i.e., rarely
missing pairs. It cannot detect violations of patterns with only
one pair. TIKANGA [16] builds on the same algorithm, but
encodes usages using temporal properties (CTL). Both detectors
detect missing and misplaced calls.

DMMC [1] encodes usages as sets of methods called on the
same receiver type. It identifies violations by computing, for
every usage, the ratio of the number of equal usages and usages
with one additional call. Intuitively, a violation should have
few exactly-similar usages, but many almost-similar usages.

The problems that Amann et al. [18] identified as the root
causes for the low recall and precision of these detectors as
well as our strategies to mitigate them are as follows.

P1: Representation. On average, 45.8% of false nega-
tives were due to the inability of the detectors’ underly-
ing representations to capture details necessary for differ-
entiating misuses from correct usages [18]. For example,
DMMC and GROUMINER encode methods by their names
only and, hence, cannot detect a missing method call when
an overloaded version of the method is called (e.g., the
misuse calls String.getBytes() while the pattern requires
String.getBytes(String)). Our representation tracks method-
call arguments. Additionally, for the first time, we provide a
representation that combines tracking of control flow, excep-
tional flow, order of method calls, synchronization, and data
flow. Previous detectors considered these features in isolation.

P2: Matching. On average, 31.3% of false negatives were
due to detectors not matching patterns to misuses [18]. For
example, to identify that two methods are called in the wrong
order, say b();a() instead of a();b(), a detector needs to both
capture the call order, and match the pattern and misuse despite
the different order. Similarly, a detector needs to consider
sub-typing information to match a Collections.size() call
found in a pattern to an ArrayList.size() call found in a
usage. Another issue is that some detectors use a distance
threshold to filter their findings, which may filter true positives,
e.g., if a misuse contains additional, optional method calls.
MUDETECT matches calls even if their order differs, considers
type-hierarchy information, and does not employ a distance
threshold, but rather enforces a ranking strategy.

P3: Uncommon Usages. On average, 34.3% of the false
positives were uncommon-but-correct usages [18]. It is gener-
ally difficult, if not impossible, to automatically and precisely
distinguish uncommon usages from misuses. However, the
study observed that many of the false positives for uncommon
usages involved methods without side effects, pure methods,

such as getters. Since invocations of pure methods cannot
be required, unless their return value is actually needed,
MUDETECT removes calls to pure methods from patterns, unless
their return value is used in the pattern.

P4: Alternative Patterns. On average, 19% of false positives
were usages that violate some particular pattern, but conformed
to another (alternative) pattern [18]. Such alternative-pattern in-
stances may even accumulate to 28% of the false positives [15].
Therefore, MUDETECT filters alternative-pattern instances.

P5: Self- and Cross-method Usages. On average, 12.2% of
false positives were due to detectors not distinguishing self- and
cross-method usages [18]. In a self usage, a class uses part of
its own API in its implementation, e.g., Collection.addAll()
calls Collection.add(). Constraints that client usages must
adhere to, e.g., guarding calls by checks, may not apply to self
usages. In a cross-method usage, an object is used by multiple
methods, e.g., by storing it in a field. From the perspective of
an individual method, we have only a partial view on the entire
usage scattered across methods. For both types of usages, an
intra-procedural analysis potentially detects partial usages, i.e.,
violations, that are not actual misuses. Therefore, MUDETECT

ignores self-usages and usages on fields.

P6: Ranking. Often, the detectors correctly identified misuses,
but ranked them extremely low [18]. An effective ranking
mechanism that pushes true positives to the top is essential for
saving developers’ efforts. We empirically investigate several
ranking factors from the literature and compose a ranking
strategy that effectively prefers true positives.

P7: Usage Examples. A possible cause of the detectors’ low
recall is a lack of correct usages in their training projects [18].
To validate this hypothesis, we evaluate MUDETECT in both a
per-project setting, which is the norm in the literature, and a
cross-project setting that provides more training examples.

III. MUDETECT

We design a new API-misuse detector, MUDETECT, that
adopts the strengths of previous detectors and addresses the
problems summarized in Section II as follows:
1) We design API-Usage Graphs (AUGs), a representation of

API usages that simultaneously captures many properties
that can distinguish misuses from correct usages.

2) We design a new pattern-mining algorithm, based on
frequent-subgraph mining, that exploits domain knowledge
about API usages to efficiently identify usage patterns.

3) We design a new detection algorithm, which uses domain
knowledge to efficiently identify API-usage violations.

4) We design a ranking strategy that effectively ranks true
positives before false positives.

A. API-Usage Graphs

Amann et al. [18] found the graph-based GROUM rep-
resentation of usages to be most promising for identifying
misuses. However, GROUMs still capture insufficient details
(P1 (Representation)), which is why we propose API-Usage
Graphs (AUGs) as a new representation of API usages. An

FileInputStream.<init>

<catch>

FileInputStream

String

handle()

InputStream.read()

<nullcheck>

int

<return>

FileNotFoundException

cond
order

para

order

def

para

recv

order

para

order

cond

order

para

para

order

order

throw
def

hdl

cond

order

order

order

order

if (file != null)
 try {
 FileInputStream fis =
 new FileInputStream(file);
 return fis.read();
 } catch(FileNotFoundException e) {
 handle(e);
 }

Action Data

Control Flow

Data Flow

Figure 1: An API Usage and its API-Usage Graph.
AUG is a directed, connected multigraph with labelled nodes
and edges. Nodes represent data entities, such as variables,
and actions, such as method calls; edges represent control and
data flow between entities and actions represented by nodes.
Figure 1 shows an example. MUDETECT’s intra-procedural
analysis creates one AUG from each source method.

1) Usage Actions: We use action nodes to represent method
calls, operators, and instructions in API usages (boxes in
Figure 1). For method calls, we use labels T.M(), where M

is the method’s name and T is the simple name of its declaring
type. For constructor calls, we use labels of the form T.<init>.
Using the declaring type abstracts over different static receiver
types (P2 (Matching)); e.g., all calls to size() on a List,
LinkedList, or ArrayList are labelled Collection.size().

We encode equality and relational operators to capture
conditions such as list.size()>0. To abstract over alter-
native ways to express a condition, e.g., l.size()!=0 and
!(l.size()==0), we use the label <r> for all equality and
relational operators and drop negation operators. To also
abstract over alternative ways to compose conditions, e.g.,
a&&b and !(!a||!b), we drop the conditional operators &&

and ||. With this abstraction level, we focus on detecting the
absence or presence of conditions in API usages, rather than
logical mistakes in conditions. We capture null checks, e.g.,
the null check on file in Figure 1, by action nodes with
the dedicated label <nullcheck> to distinguish this special
condition from other comparisons. We encode unconditional
control instructions, such as return, throw, and catch, by
action nodes with dedicated labels, e.g., the <catch> and
<return> nodes in Figure 1.

To reduce false positives due to P5 (Self- and Cross-method
Usages), we heuristically exclude self- and cross-method usages
from AUGs: We create no nodes for method calls on this and
super as well as on field accesses on both these qualifiers.

2) Data Entities: We use data nodes to represent objects,
values, and literals that appear in API usages (ovals in Figure 1).
We encode data entities as nodes to make data dependencies
between actions, such as multiple calls on the same object,
explicit, to ensure we have a connected subgraph with all

data-dependent parts of a usage, and to distinguish overloaded
versions of methods by their parameter entities. We uniformly
create data nodes for variables, fields, and objects that are not
assigned but immediately used, e.g., in a method-call chain.

Since certain types, such as List, ArrayList, and
LinkedList, appear almost interchangeably in API usages,
we label all data nodes <Object>. This allows us to abstract
over different static types (P2 (Matching)), while checking the
data-/control-flow that the data entities take part in. Note that
Figure 1 shows the simple type names for better readability.

3) Control Flow and Data Flow: We use edges to represent
control flow and data flow. We distinguish eight types of edges
and label them with their type. Figure 1 shows seven of these
edge types, labelled with acronyms for brevity.
• A receiver edge connects from a data node to a method call

that is invoked on the respective object.
• A parameter edge connects from a data node to an action

that takes the respective object or value as a parameter.
• A definition edge connects from an action that creates or

returns a value or object to the respective data node.
• An order edge connects, in order of execution, two ac-

tion nodes operating on the same data entity (receiver or
parameter). Since we want MUDETECT to discover wrong
method-call order, we over-approximate temporal relations
by building the transitive closure over order edges. To keep
AUGs acyclic, we exclude backwards edges from loops.

• A condition edge connects an action whose result controls
branching to an action controlled by that branching.

• A synchronize edge connects a data node that the program
obtains a lock on to an action executed under that lock.

• A throw edge connects an action that may throw an exception
to a data node representing that exception object. We use the
throws information, if it is resolvable, to determine which
exception may be thrown by an action. We connect exception
data nodes to respective <catch> nodes with parameter edges.

• A handle edge connects from a <catch> node to an action
in a respective exception handling block.

This detailed dependency information helps distinguish misuses
from correct usages (P1 (Representation)), relate usages despite
notational differences (P2 (Matching)), and consider code
semantics in both pattern mining and violation detection.

B. Pattern Mining

Listing 1 shows our pattern-mining algorithm, which takes
a set A of AUGs, a frequency measure f and a frequency
threshold σ, and produces a set of patterns. A pattern is a
sub-AUG that occurs frequently in A, and a pattern instance
is an occurrence. A sub-AUG p is a pattern if it has f(p) ≥ σ
instances. The algorithm follows three key ideas:

1) Apriori-based Mining: The algorithm follows the general
idea of an apriori-based algorithm for frequent-subgraph
mining [24], i.e., it mines patterns by starting from all single-
method-call patterns (Line 2) and recursively extending them
to larger patterns (Line 3). The key idea here is that if a graph
occurs frequently, all of its subgraphs also occur frequently. To
extend a pattern p of size k, the algorithm generates all suitable

1 def mine(A: Set[AUG], f: Pattern → int, σ: int)
2 P0 = {p | p ∈ single_call_patterns(A) and f(p)≥ σ}, P = ∅
3 for p in P0: extend(p, P, f, σ)
4 return P
5

6 def extend(p: Pattern, P: Set[Pattern],
7 f: Pattern → int, σ: int)
8 E = {e | i ∈ p and e ∈ generate_extensions(i)}
9 PC = {c | c ∈ isomorphic_clusters(E) and f(c)≥ σ}

10 UC = PC \ P
11 if UC 6= ∅:
12 c = most_frequent(UC)
13 extend(c, P, σ)
14 else: P = P ∪ {p}
15 ip = {i | i ∈ p and ∀c ∈ PC. generate_extensions(i)∩ c = ∅}
16 if f(ip) ≥ σ: P = P ∪ {ip}
17

18 def generate_extensions(i: Instance)
19 extensions = ∅
20 for n in adjacent_nodes(i):
21 if has_non-order_connection(n, i) and (
22 is_non-pure_call(n)
23 or (is_pure_call(n) and has_out_connection(n, i))
24 or (is_operator(n) and has_in&out_connection(n, i))
25 or (is_data(n) and has_out_connection(n, i))):
26 extensions = extensions ∪ {i⊕ n}
27 return extensions

Listing 1: MUDETECT’s Pattern-Mining Algorithm

extensions of size k + 1 for all pattern instances of p (Line 8).
This is done by exploring each adjacent node (Line 20). When i
is extended by an adjacent node, all edges from a that connect
i and the node are added as well. Extending by nodes, as
opposed to by edges, enables scalable mining of AUGs, which
usually have a large number of edges.

2) Code Semantics: When extending a pattern instance i,
the algorithm distinguishes different types of adjacent nodes.
Specifically, it decides whether an adjacent node is suitable
for extending i as follows: A node that is only connected
by an order edge is unsuitable (Line 22). Otherwise, a non-
pure method call is always suitable (Line 22). A pure method
call is suitable only if it has an outgoing edge to a node
in i (Line 23), i.e., if it defines a data node or controls an
action node in i. Since pure methods have no side effects,
they can impact a usage only through their return value. To
avoid the complexity of inter-procedural analysis, the algorithm
identifies pure methods heuristically: It considers any method
whose name starts with get as pure, since getters are mostly
pure and very prevalent. An operator is suitable only if it has
at least one incoming and one outgoing edge to i (Line 24),
because operators are like pure methods whose result is based
solely on their parameters, as opposed to parameters and state.
A data node is suitable only if it has an outgoing edge to i
(Line 25), i.e., when it is used in the usage. These decisions
based on code semantics contribute to obtaining meaningful
patterns, thereby mitigating the problem of flagging uncommon
usages as misuses (P3 (Uncommon Usages)).

3) Greedy Exploration: To identify (k + 1)-patterns in the
set of all extensions of the instances of p, the algorithm
clusters isomorphic extensions to pattern candidates (Line 9).
To reduce the complexity of graph isomorphism detection, the
algorithm uses a heuristic that combines graph vectorization
and hashing [25]. More specifically, a graph is represented
as a vector of features, each of which is extracted from the

labels of a sequence of nodes and edges along a path in the
graph. Two graphs are isomorphic if their corresponding feature
vectors have the same hash value. The algorithm then filters
out all candidates that it found before (Line 10). If there are
no further frequent extensions of p, i.e., p is inextensible,
the pattern is added to the set of final patterns P (Line 14).
If any unexplored candidate remains (Line 11), the algorithm
selects the most-frequent one (Line 12) and recursively searches
for larger patterns (Line 13). This greedy strategy avoids the
combinatorial explosion problem of exhaustive search with
backtracking and makes our mining scale to a large number of
large graphs, unlike GROUMINER, which often timed out [18].

In addition to the possible extensions, the algorithm also
keeps track of those instances that do not have any frequent
extension (Line 15). If these inextensible pattern instances are
themselves frequent, it adds this pattern to P (Line 16). The
intuition is that an API might have a core pattern and additional
alternative patterns that contain it (P4 (Alternative Patterns)).

C. Violation Detection

Listing 2 shows our detection algorithm. It takes a set T of
target AUGs, a set P of patterns, and a ranking function r and
produces a list of violations. A violation is a strict subgraph
of a pattern. The algorithm consists of four major steps:

1) Graph Matching: The detection algorithm first checks
each pair of a target and a pattern for common subgraphs
(Line 6). To identify the subgraphs, the algorithm follows
the general idea of the pattern-growth approach for frequent-
subgraph mining [24], i.e., it discovers the largest common
subgraphs of each pair of a pattern and a target (Line 6), by
starting from all common method-call nodes (Line 16) and
recursively extending the common subgraph (Line 17), one
adjacent edge at a time. This allows us to find even single
missing edges, e.g., wrong order of two method calls.

When searching for possible mappings of a pattern AUG
onto a target AUG, the detection algorithm follows a greedy
extension strategy. It continuously selects the next-best pattern
edge, while exploring all alternative mappings to the target.
This avoids the combinatorial explosion problem of an ex-
haustive search with backtracking. The algorithm explores all
alternatives in the target, as opposed to in the pattern, because
targets are usually larger and, therefore, likely contain more
alternatives. This results in higher precision.

When exploring candidates, there may be multiple equivalent
candidate extension edges. Two edges are equivalent if they
have the same type, both their source and target nodes have the
same label, respectively, and mapping them onto each other is
consistent with the current mapping between target and pattern
nodes. The node mapping is consistent if every node from the
target is mapped to at most one node from the pattern and
vice versa. Intuitively, the more equivalent edges, the more
alternative mappings exist and the more likely it is to select a
non-optimal mapping. To decrease this likelihood, the algorithm
counts equivalent edges in the target and the pattern (Line 26)
and gives priority to edges with fewer equivalent alternatives.

1 def find_violations(T: Set[AUG], P: Set[Pattern],
2 r: (Set[Violation], Set[Instance], Set[Pattern]) →

List[Violation]):
3 V = ∅, I = ∅
4 for target in T:
5 for pattern in P:
6 for overlap in common_subgraphs(target, pattern):
7 if overlap = pattern:
8 I = I ∪ {Instance(target, pattern)}
9 elif overlap < pattern:

10 V = V ∪ {Violation(target, pattern, overlap)}
11 VA = filter_alternatives(V , I)
12 VR = r(VA, I, P)
13 return filter_alternative_violations(VR)
14

15 def common_subgraphs(t: AUG, p: Pattern):
16 S = single_call_node_overlaps(t, p)
17 return {lcs | lcs ∈ extend_subgraph(s, t, p) and s ∈ S}
18

19 def extend_subgraph(o: Overlap, t: AUG, p: Pattern)
20 e = next_extension_edge(o, t, p)
21 return extend_subgraph((o⊕ e), t, p) if e 6= none else o
22

23 def next_extension_edge(o: Overlap, t: AUG, p: Pattern):
24 ebest = none, wmin = inf
25 for e in adjacent_edges(o, t):
26 w = count_equiv_edges(e, t) * count_equiv_edges(e, p)
27 if 0 < w and w < wmin:
28 ebest = e, wmin = w
29 return ebest

Listing 2: MUDETECT’s Detection Algorithm

Mapping these first eliminates equivalent alternatives that are
inconsistent with the extended node mapping.

2) Alternative-Pattern Instances: There may be alternative
ways to use an API, e.g., before fetching an item from a Set, we
may either check that it is !empty() or that it has size() > 0.
If we have patterns for both cases, these overlap, since fetching
an item requires the same calls in both cases. Consequently, an
instance of one of the patterns violates the other pattern (P4
(Alternative Patterns)), because the instance shares elements
with both patterns and either misses the size or the emptiness
check. Following this insight, our detection algorithm sorts
each common subgraph of a target and a pattern into one of
two categories: pattern instances, i.e., subgraphs equal to the
pattern (Line 7), and violations, i.e., strict subgraphs of the
pattern (Line 9). Once all targets and patterns are processed,
it uses the set of instances to filter out violations that are
subgraphs of instances of another pattern (Line 11).

3) Violation Ranking: After identifying all violations in the
target code base, the detection algorithm ranks the findings
(Line 12). Section III-D discusses ranking strategies in detail.

4) Alternative Violations: If a usage violates all alternative
patterns, the filtering for alternative-pattern instances (Sec-
tion III-C2) leaves all respective violations in place. To avoid
such duplicates, we filter violations involving a method call
that is also part of a violation at a higher rank (Line 13).

D. Ranking

Ranking the detected violations is crucial for MUDETECT’s
precision, since it controls how many true positives appear
among the top findings (P6 (Ranking)). The ranking may also
impact MUDETECT’s recall, since we filter alternative violations
based on the ranking order of the findings (see Section III-C4),
which may eliminate true positives. To design MUDETECT’s

ranking strategy, we first survey existing ranking strategies
and discuss their individual factors. Then, we compose new
ranking strategies from these factors.

a) Previous Ranking Strategies: Some detectors use a
maximal distance between a pattern and a usage to classify
the usage as a violation [10], [12], [16], where distance is
the number of facts from the pattern that the usage misses.
Facts might be method calls, order relations between call pairs,
or nodes and edges, depending on the usage representation.
Intuitively, usages that are distant from a pattern P are more
likely occurrences of an alternative pattern than violations of
P . We compute the distance between a pattern and a usage
AUG via the number of nodes and edges nm that the usage
misses from the pattern. We normalize nm by the total number
of elements np of the pattern. Since a missing node always
implies that all edges connecting to it are also missing, we take
the number of missing edges from/to missing nodes ne out
of the equation. This leads to our violation-overlap measure
vo = (nm − ne)/(np − ne).

Some detectors rank their findings by the support of the
violated patterns (ps) [8], [14], [15]. Intuitively, ps expresses
the miner’s certainty regarding the correctness of the pattern.

Monperrus et al. [1] rank their findings by the confidence,
combining ps and the number of violations of the pattern (pv)
into ps/(ps + pv). Intuitively, patterns with more violations
more likely contain usage properties that are not mandatory,
making their violations more likely to be false positives.

Some detectors [8], [12] rank their findings by their rareness,
combining ps and the number of times the violation reoccurs,
i.e., the violation support (vs), into (ps− vs)/ps. Intuitively, a
violation that occurs more often is less likely to be problematic.

Wasylkowski et al. [10] rank findings by a defect indicator,
combining ps, vs, and a pattern-uniqueness factor (pu), into
pu × ps/vs. To compute pu, they count for every API in the
pattern the number of violations involving that API and take
the inverse of the largest such number. Intuitively, if an API is
involved in more violations, any particular violation involving
it is less likely to be problematic.

b) MUDETECT’s Ranking Strategy: As candidates for our
ranking strategy, we consider the strategies from the literature
and all combinations of the individual ranking factors by
multiplication. For the latter, we use ps, pu, and vo as is,
but invert pv and vs, such that smaller values imply lower
probability of the violation being problematic. We multiply
them, such that, if any of the factors is low, the overall ranking
weight is low. Since it is unclear which candidate is most
useful, we empirically evaluate them. We explain the respective
experiment in Section IV-B and its results in Section V-A.

E. Per-project and Cross-project Settings

As Sections III-B and III-C show, MUDETECT separates
pattern mining and detection, which allows us to run it in two
different settings. The first is a per-project setting, where we
configure MUDETECT to use the AUGs from its target project as
the input for both pattern mining and violation detection. This
enables a fair comparison to existing detectors, which combine

mining and detection in a single phase [18] and, thus, always
mine and detect on the same input. In this setting, we follow
existing work [8], [10], [12], [16] and define the frequency
measure f(p) as the number of distinct instances of the pattern.

The second is a cross-project setting, where we configure
MUDETECT to use the AUGs from its target project as the
input for violation detection and AUGs from other projects as
input for pattern mining. This allows us to provide additional
usage examples for mining (P7 (Usage Examples)). We call
this configuration MUDETECTXP. In this setting, we define the
frequency measure f(p) as the number of projects from which
at least one instance of the pattern originates. The intuition
is that a pattern that occurs in more projects is a generally
reusable pattern and, therefore, more likely to be correct than
a pattern that occurs only in a single project (a project-specific
pattern), even if it occurs frequently within that project.

IV. EVALUATION SETUP

We now present the setup that we use to compare MUDE-
TECT’s precision and recall to existing detectors. We aim to
understand the effectiveness of our mitigation strategies and
the impact of the ranking strategies discussed in Section III-D.

A. Detectors and Dataset

We compare MUDETECT against the four detectors JADET,
GROUMINER, TIKANGA, and DMMC, which were empirically
evaluated by Amann et al. [18]. As the ground-truth for the
experiments, they used MUBENCH [7], a dataset of open source
projects with 84 known API misuses (Table I, Row 1). For 64
of these misuses, MUBENCH also contains examples of correct
usages, which are derived from the fix of the misuse. Since we
designed MUDETECT using insights from Amann et al.’s study,
an evaluation only on MUBENCH may suffer from overfitting.
Therefore, we extend the dataset by misuses identified in a
recent study by Legunsen et al. [19]. They applied runtime
verification of API specifications to 200 open-source projects
and submitted 114 pull requests that fix API misuses identified
in this process. From this set, we take all misuses for which
the pull request was accepted as of August 8, 2017, which adds
107 new misuses from 30 projects to our experiments (Table I,
Row 2).1 Following the structure of MUBENCH, we derive
examples of correct usage from the accepted pull requests.

Overall, this gives us a benchmark dataset with 191 API
misuses from real-world projects (Table I, Row 3). We use
this dataset in our experiments. For simplicity, we refer to this
extended dataset as MUBENCH throughout the rest of the paper.

B. Experimental Setup

To evaluate MUDETECT, we conduct the three per-project
experiments proposed by Amann et al. [18]: Experiment P to
measure precision, Experiment RUB to determine recall upper
bound, and Experiment R to measure actual recall. We also

1JADET and TIKANGA initially crashed on most new projects, because
they used the outdated Bytecode toolkit ASM 3.1. To fix this, we updated
this dependency to ASM 6.0. To ensure that this change did not hamper with
the detectors’ capabilities, we repeated the experiments of Amann et al. [18]
and verified that the detectors still produce the exact same results.

Table I: MUBENCH: Number of Misuses (#MU) and Number
of Misuses with Corresponding Correct Usages (#CU).

Dataset #MU #CU

Original MUBENCH [18] 84 64
Our Extension 107 107

Extended MUBENCH 191 171

Table II: Experiment RNK: Number of Hits (#H), Average Hit
Rank (AHR), and Number of Hits in the Top-20 (@20).

Strategy @20 #H AHR # Strategy @20 #H AHR

1. ps/vs × vo 19 34 91.6 . . .
2. ps/vs 17 34 91.8 9. ps 14 34 305.5
3. ps/vs × vo × pv 16 34 90.1 . . .
4. Rareness 16 33 94.3 33. pu/vs 2 18 53.2

. . . 34. vo 1 26 1187.4

design Experiment RNK to compare the ranking strategies
discussed in Section III-D and Experiment XP to evaluate
MUDETECTXP in a cross-project setting. We set the frequency
threshold σ = 10 for MUDETECT and σ = 5 for MUDETECTXP.
For the other detectors, we use their best configurations from
the respective publications.

We execute the experiments using MUBENCHPIPE [18], a pub-
lic automated benchmarking pipeline built on top of MUBENCH.
MUBENCHPIPE facilitates preparing the target projects from
MUBENCH, executing the detectors, and collecting result
statistics after we manually reviewed the detectors’ findings. In
all our experiments, two authors first independently reviewed
each detector finding and then discussed any disagreements
until a consensus was reached about whether the finding
correctly identifies a misuse. We report Cohen’s Kappa score
as a measure of the reviewers’ initial agreement. We now
introduce these five experiments in detail.
Experiment P. The goal of Experiment P is to measure the
detectors’ precision. We run the detectors on all projects from
MUBENCH, letting them mine patterns and detect violations
on a per-project basis. Since some detectors report several
hundreds of findings, reviewing all findings of all detectors on
all projects is practically infeasible. Therefore, we sample ten
projects and review the top-20 findings per detector on each of
them, as determined by the detectors’ own ranking strategies. In
this sample, we include the five projects Amann et al. [18] used
in their precision experiment. In addition, we choose another
five of the new projects we added to MUBENCH. To this end, we
compute the average normalized number of findings (ANNF)
across detectors for each project. The NNF for a given detector
for a given project is the number of findings the detector has
on that project divided by the maximum number of findings
the detector has on any project. We select two projects with the
highest ANNF, two projects with the lowest ANNF, and one
random project from the mid range. For fairness, we exclude
projects where one of the detectors failed or where two or more
detectors did not report any findings. We could not exclude all
projects where one of the detectors did not report any findings,
because this left us with fewer than five projects to chose from.
Experiment RUB. The goal of Experiment RUB is to assess

detectors’ recall upper bound, given perfect training data. This
separates conceptual limitations from the effect of insufficient
training data. Since we need to provide a correct usage as input
training data, we limit this experiment to the 171 misuses in
MUBENCH that have corresponding correct usages (see Table I).
We run the detectors once for each of these misuses, providing
them with enough copies of the corresponding correct usage
for pattern mining. This ensures that detectors always find
sufficient evidence to mine the pattern required to identify the
misuse. We review all potential hits, i.e., all detector findings
in the same method as the known misuse.

Experiment R. The goal of Experiment R is to measure
the detectors’ recall. We run the detectors on all projects of
MUBENCH, letting them mine patterns and detect violations on
a per-project basis. Then, we again review all potential hits. As
the ground truth, we use all 191 known misuses from MUBENCH,
plus any previously unknown true positives identified by the
detectors in Experiment P. This gives us the recall of the
detectors with respect to a large number of misuses and, at the
same time, crosschecks which of the detectors’ findings are
also identified by other detectors.

Experiment RNK. The goal of Experiment RNK is to find
the best ranking strategy for MUDETECT among the candidate
strategies discussed in Section III-D. Ideally, we would repeat
both Experiments P and R for all 34 candidate ranking strategies
to determine the best strategy. However, repeating Experiment P
would require us to review up to 20 findings for each of the ten
target projects per candidate strategy – a total of 6,800 findings
– , which is practically infeasible. Therefore, we only repeat
Experiment R for each of the candidate ranking strategies. This
gives us both the recall of the detector, as well as the ranks of
all confirmed hits, i.e., findings that identify a known misuse
from MUBENCH. We use the number of hits, the average rank of
all hits, and the number of hits in the top-20 findings as quality
measures for the ranking strategies. To prevent overfitting, we
use only the original MUBENCH for Experiment RNK and verify
the result on our extended dataset.

Experiment XP. The goal of Experiment XP is to measure
MUDETECTXP’s precision and recall (in a cross-project setting).
To measure precision, we run MUDETECTXP on the ten sample
projects from Experiment P and review its top-20 findings.
To measure recall, we run MUDETECTXP on all projects in
MUBENCH and review all its potential hits for all known misuses,
as in Experiment R. For each target project, we provide the
detector with training projects for all APIs with known misuses
in the target project. To ensure that the training projects contain
examples of the APIs with known misuses in MUBENCH,
we collect client projects of the respective APIs using the
code-repository mining platform BOA [26] (full 2015 GitHub
dataset). For each API, we query BOA for projects that either
declare a field, variable, or parameter, or call a static method of
the respective API type. We share the query template and the
result lists [22]. From each list, we take the first 50 projects that
are still available as of February 2018 and randomly sample up
to 20 usage examples of the respective API from each project.

This gives us a diverse cross-project sample of up to 1,000
usage examples per API.

V. RESULTS

In this section, we present the results of our experiments and
compare MUDETECT’s detection performance with the detectors
JADET, GROUMINER, TIKANGA, and DMMC. All experiments
ran on a MacBook Pro with an Intel Xeon @ 3.00GHz and
32GB of RAM. Tables II and III summarize the results; the full
results are available on our artifact page [22].

We analyze the root causes for MUDETECT’s false negatives
(FN) and false positives (FP) in each subsection, as applicable,
to validate whether our mitigation strategies were successful
and to direct future work. We present the most prevalent root
causes here and the full list on our artifact page [22]. We also
discuss possible mitigation strategies and their trade-offs.

A. Experiment RNK

We first run Experiment RNK on the original MUBENCH to
determine the best ranking strategy for MUDETECT. Table II
shows the best and worst ranking strategies ordered by the
number of hits in the top-20 findings (@20), the number of
hits (#H), and the average hit rank (AHR).

The results show that ranking has a huge impact on how
high MUDETECT ranks the misuses. We observe that the pattern
support (ps) appears in all of the top-16 and in none of the
bottom-10 ranking strategies. Contrarily, the pattern uniqueness
(pu) appears in 11 of the bottom-15 strategies and in none of
the top-10. The violation-overlap measure (vo), the violation
support (vs), and the pattern violations (pv) appear in different
combinations in ranking strategies throughout the field. While
this clearly shows that the pattern support is the most important
ranking factor, the strategy consisting of only this factor is
only the 9th-best strategy. This suggests that detectors should
consider other factors as well. The best strategy combines the
pattern support (ps), the support of the violations (vs), and
the violation-overlap measure (vo) into ps/vs × vo. Repeating
Experiment RNK on our dataset extension identifies the same
best ranking strategy. We use this strategy for MUDETECT and
MUDETECTXP in all remaining experiments.

B. Experiment P

The first part of Table III summarizes the results of measuring
the detectors’ precision in their top-20 findings.

O1: MUDETECT reports 146 violations in the top-20 findings
in the ten projects. Among these violations, we find 32 true
positives, 21 of which were previously unknown. This results
in precision of 21.9%, which exceeds the precision of the
other detectors more than two-fold.

The results of Experiment P show that the ranking strategy
identified from Experiment RNK successfully pushes true
positives to the top (P6 (Ranking)), allowing us to outperform
other detectors. MUDETECT also reports no false positives
that are instances of alternative patterns. Since such false
positives accumulate to 19% of other detectors’ findings [18],

we conclude that our filtering strategy successfully resolves
P4 (Alternative Patterns). MUDETECT reports no self-usages
and only one cross-method usage, which our filtering misses,
because the respective object is initialized as a local variable
and only later assigned to a field. While this is an opportunity
to improve our filtering heuristic, it also shows that our strategy
successfully mitigates P5 (Self- and Cross-method Usages),
which caused 12% of the false positives of other detectors [18].
However, there are still false positives, due to different causes:
FP1: Uncommon Usages. 84 (73.7%) of the false positives
are uncommon-but-correct usages. In nine cases, e.g., a loop
calls Iterator.hasNext() again after calling next(), to check
whether there will be a subsequent iteration. MUDETECT reports
a missing call to next() after this second call to hasNext().
This illustrates two problems: (1) the heuristic for identifying
pure methods by the name prefix get misses cases such as
hasNext(), (2) MUDETECT does not consider alternative non-
frequent patterns. This root cause of false positives corresponds
to P3 (Uncommon Usages). We conclude that the removal of
calls to pure methods is insufficient to address this problem.
A future solution might be a probabilistic model of API usage
that considers the likelihood of different usages and reports no
violation if one usage is only slightly more likely than another,
or if an API’s usages generally vary a lot.
FP2: Intra-procedural Analysis. 18 (15.8%) of the false
positives are due to our intra-procedural analysis. In seven
cases, MUDETECT reports missing usage elements that occur in
transitively called methods. Using an inter-procedural analysis,
e.g., to filter such false positives as proposed by Li and
Zhou [8], might help mitigate this problem. Future work should
investigate whether the additional computational cost pays off.

C. Experiment RUB

The second part of Table III summarizes the results of
measuring the upper bound to the detectors’ recall.

O2: MUDETECT identifies 124 of the 171 misuses used in
this experiment (72.5%). This upper bound of recall clearly
outranks that of the other detectors by 20.3% for GROUMINER

and by over 54% for each of the other three detectors.

O2 shows that we successfully mitigated P1 (Representation)
with the design of AUGs: (1) AUGs capture the difference
between correct usages and misuses better than all other
detectors’ representations and (2) our detection algorithm
succeeds in identifying these differences. There are still 15
false negatives due to P1 (Representation), all cases where an
illegal parameter value (constants or literals) is passed as a
call parameter. None of the detectors can detect these, because
they do not capture concrete values.

MUDETECT correctly matches pattern and target usages
despite different call order and polymorphic calls, which means
we successfully mitigated P2 (Matching). There are still seven
false negatives where it does not match the respective pattern
and target usages, because they contain only a single, distinct
call. None of the detectors identifies these cases, because they
only match patterns and usages with at least one common call.

Overall, MUDETECT identifies 39 misuses that all other
detectors miss. In turn, MUDETECT misses ten misuses that at
least one of the other detectors finds, eight of which are due
to the heuristics we introduced to improve precision, such as
filtering cross-method usages. There are 38 more misuses that
all detectors miss. False negatives of MUDETECT are due to:
FN1: Self-Usages. Eight cases are due to our removal of
self-usages, which successfully mitigated P5 (Self- and Cross-
method Usages) in Experiment P. This means we traded recall
for precision. By capturing inter-procedural usages we might
make filtering self- and cross-method usages unnecessary and
enable us to identify misuses in them. The CHRONICLER [11]
detector mines usages from an inter-procedural call graph,
which might mitigate the problem. However, it is unclear how
to adapt this approach from considering only method calls to
all usage elements encoded in AUGs. Furthermore, such an
approach duplicates evidence, if methods are called multiple
times, which might bias the mining.
FN2: Redundant. Seven cases are misuses where the usage
has a redundant element that should be removed. Since all
detectors are designed to detect missing elements, none can
detect these misuses. It is worth noting that DROIDASSIST [27]
uses a probabilistic approach that might find superfluous
method call, but the technique has never been evaluated.

D. Experiment R

Overall, the detectors identified 34 previously unknown
misuses in Experiment P. With the 191 misuses from MUBENCH,
this gives us 225 misuses for measuring the detectors’ recall.
The third part of Table III summarizes the results.

O3: MUDETECT identifies 47 of the 225 misuses. This results
in recall of 20.9%, which exceeds the recall of the other
detectors almost two-fold.

MUDETECT correctly identifies 13 misuses that none of the
other detectors identifies, eleven of which it already identified
in Experiment P. The other six previously unknown misuses
from Experiment P are also identified by at least one detector.

MUDETECT misses 13 misuses that one of the other detectors
finds. Six of these are identified only by DMMC, because
the projects contain too few usage examples for the other
detectors to mine a respective pattern. DMMC’s probabilistic
approach may identify misuses with little evidence. In three of
the six cases, DMMC finds exactly two usage examples of the
respective API: a correct usage and the misuse. Consequently,
ps = 1 and pv = 1 and, therefore, confidence = 0.5, which
is exactly DMMC’s threshold for reporting a misuse. Since
MUDETECT requires a pattern support of at least 10, it cannot
find these misuses. Another five of these misuses are identified
by JADET or TIKANGA or both. In all cases, the target method
contains multiple equal misuses. JADET and TIKANGA report
a single finding identifying the misuse, but since they do not
provide line locations within the method, we conservatively
count it as a hit for all the misuses. MUDETECT, on the other
hand, reports findings at line level, which is why we only
count hits when the finding line matches the known misuse

Table III: Results: Experiment P measures precision in the
top-20 findings. Experiment RUB measures recall upper
bound. Experiment R measures recall. Experiment XP measure
precision and recall of MUDETECTXP.

Experiment P Experiment RUB Experiment R

Detector C
on

fir
m

ed
M

is
us

es

Pr
ec

is
io

n

K
ap

pa
Sc

or
e

H
its

R
ec

al
l

U
pp

er
B

ou
nd

K
ap

pa
Sc

or
e

H
its

R
ec

al
l

K
ap

pa
Sc

or
e

JADET 8 8.8% 0.64 29 16.9% 0.79 15 6.7% 0.64
GROUMINER 4 2.6% 0.49 88 51.2% 0.85 7 3.1% 1.00
TIKANGA 7 8.2% 0.52 15 8.8% 0.73 17 7.6% 0.69
DMMC 12 7.5% 0.72 28 16.3% 0.88 24 10.7% 0.91
MUDETECT 32 21.9% 0.90 124 72.5% 0.89 47 20.9% 1.00
MUDETECTXP 30 33.0% 0.88 95 42.2% 0.93

line, resulting in only 1 hit being counted. For the last two of
these misuses, MUDETECT misses the pattern due to the greedy
extension strategy that we chose to keep the mining scalable.

E. Experiment XP

While MUDETECT has considerably higher recall than
the other detectors, we aim to push its boundaries further.
We observe that it has on average 227.6 usages examples
(median = 105) for APIs whose misuses it identifies, but
only 38.6 examples (median = 11) for those it misses. The
moderate correlation (Pearson’s r = 0.52) between the number
of examples and detecting a misuse supports the hypothesis
that the target projects lack usage examples for some APIs.

The 225 misuses in Experiment R are from 59 APIs. For five
of these, we find no projects with respective usages on GitHub
and for another thirteen, we find less than 50 projects. For the
remaining 41 APIs, we find 50 or more projects. The cross-
project sampling (Section IV-B) collects on average 239.3
usage examples per API (median = 172), compared to the
average of 78.5 (median = 25) in the per-project setting.

The last row of Table III shows the precision and recall
of MUDETECTXP compared to those of the other detectors in
Experiment P and Experiment R.

O4: MUDETECTXP reports 91 violations in the top-20 findings
on the ten projects. Among these violations, we find 31 true
positives, six of which were previously unknown. This results
in precision of 33.0%, which outranks MUDETECT by 11.1%
and the other detectors almost fourfold.

O5: MUDETECTXP identifies 95 of the 225 misuses. This
results in recall of 42.2%, which improves on MUDETECT

results more than twofold and on the other detectors’ more
than fourfold.

MUDETECTXP identifies 65 misuses that MUDETECT misses.
For these misuses, MUDETECT has on average only 94.6 usage
examples (median = 16), while MUDETECTXP has on average
258.4 examples (median = 216). This suggests that detectors
should search for additional usage examples, if the target
project itself contains too few. MUDETECT, in turn, identifies
17 misuses that MUDETECTXP misses. Ten of these are usages

of APIs declared in the respective target project. Interestingly,
the problem is not a lack of examples, as MUDETECTXP has
on average 239.3 (median = 172). A possible explanation is
that APIs are used differently in the declaring project than in
client projects. This suggests that detectors should consider,
but distinguish both sources of usage examples.

The results of Experiment XP show that mining patterns
from other projects significantly improves both precision and
recall (P7 (Usage Examples)). This is encouraging for API
misuse detection researchers: given the completely automated
pipelines provided by MUBENCHPIPE and MUBENCH, it should
be straightforward for future work to integrate the latest
techniques from finding reliable projects to mine [28] as well
as evaluating quality of online examples [29]. This could even
further improve on our results by easily retrieving more high-
quality usage examples to train the detector.

F. Generalizability
Since we evaluate MUDETECT on a dataset that we (in part)

also used to design the detector, we run the risk of overfitting.
To validate that this did not happen, we analyse by how much
MUDETECT improves over the other detectors separately on the
original MUBENCH (MBO) and our dataset extension (MBE).

On average, MUDETECT’s precision increases 3.0x on MBO
vs. 2.7x on MBE and MUDETECTXP’s precision increases
3.9x on MBO vs. 4.5x on MBE, showing that the precision
improvement generalizes.

On average, MUDETECT’s recall increases 5.1x on MBO
vs. 2.0x on MBE. This drop in recall improvement is due to
MBE containing mostly smaller projects than MBO, where
MUDETECT’s more precise analysis struggles with the small
number of training examples. Training data is apparently crucial,
because MUDETECTXP’s recall increases 5.5x on MBO vs. 6.6x
on MBE, showing that the recall improvement generalizes, too.

G. Previously Unknown Misuses
In our experiments, MUDETECT and MUDETECTXP identified

27 previously unknown misuses. To validate these findings and
as a contribution to the projects that served as our evaluation
subjects, we manually created fixes for these misuses and
submitted them as pull requests to the respective projects.

In this process, we excluded eight misuses, because the code
containing them has been deleted from the respective project
for reasons other than the misuse, and another three misuses,
because the project does not accept pull requests. From the
remaining 16 misuses, we created eight pull requests, grouping
similar misuses into a single request.

To date, three of these pull requests were accepted: One fixes
a bug in Google’s Closure compiler, which caused it to crash
on code with an invalid reference in a block comment. Such a
reference led the compiler to access an empty Iterator, due to
a missing check. Another fixes a bug in TestNG’s XML export,
which failed to close an XML tag along a specific execution
path, leading to malformed data. The third fixes two bugs in
Apache Lucene, which could lead search queries to crash due
to missing checks on collections’ length. This demonstrates
that MUDETECT finds relevant problems in mature projects.

H. Discussion

Our results show that MUDETECT identifies relevant problems
in mature software projects. It successfully adopts the strengths
of existing detectors while mitigating many of their weaknesses,
leading to 4x higher precision and recall. One of our industry
partners showed interest to use MUDETECT in code-quality
audits. The most important design decisions to achieve this
were (1) separating pattern mining and violation detection,
which enables us to apply MUDETECT in a cross-project setting,
and (2) empirically investigating ranking strategies to push true
positives to the top. Future work should investigate the perfor-
mance and precision trade-offs of using inter-procedural static
analysis to address remaining problems, such as FP2 (Intra-
procedural Analysis) and FN1 (Self-Usages). Addressing other
remaining problems, such as FP1 (Uncommon Usages) and
FN2 (Redundant), likely requires different, e.g., probabilistic,
models of API usage and mining algorithms.

VI. THREATS TO VALIDITY

Overfitting. We designed MUDETECT based on prior work’s
observations from experiments on MUBENCH [18]. We evaluated
MUDETECT (in part) on the same benchmark, which bears the
danger of overfitting. To mitigate this threat, we extend the
benchmark to more than twice its original size and validate that
MUDETECT’s performance generalizes to this extended dataset.

Internal Validity. We did not fine-tune the other detectors,
but used the best configurations reported in their respective
publications. We reviewed the detectors’ findings ourselves. The
detector producing a finding was known, because we could not
blind their distinct representations of API usages and violations.
We evaluated only MUDETECTXP in the cross-project setting,
because the other detectors cannot use separate datasets for
mining and detection. Modifying them ourselves to support
this might hamper with their capabilities. We published the
list of example projects we used [22] and encourage others to
assess their approach in this setting. Providing MUDETECTXP
with only example usages for the APIs with known misuses
in MUBENCH potentially biases the results with respect to
precision, because it reduces the overall number of patterns and,
consequently, might reduce the number of reported violations.

External Validity. The dataset of API misuses in our
evaluation might not be representative. We mitigated this by
using MUBENCH, a public and state-of-the-art benchmark. The
API misuses it contains cover the capabilities of all detectors
in our evaluation. We further extend the benchmark by findings
from a large-scale study [19].

VII. RELATED WORK

Helping developers use APIs has received much attention.
Approaches include improving documentation (e.g., [30], [31])
and assisting developers with recommendations while writing
code (e.g., [32], [33]). Another direction is API-misuse detec-
tion, which can be further classified into static and dynamic
approaches. Dynamic approaches execute programs to detect
deviations from normal behavior (e.g., [34], [35]). Our focus is
on static misuse detectors, so we briefly discuss existing ones.

Amann et al. [18] present a detailed survey and comparison
of detectors and their capabilities.

The closest work to MUDETECT is GROUMINER [12],
which uses a graph-based representation (GROUMs) for API
usages. GROUMINER’s relatively high recall [18] led us to
also use a graph representation. Both AUGs and GROUMs
are directed graphs that capture calls, field accesses, and
control/data dependence. However, GROUMs are simple graphs
that encode actions and loop/branching statements in nodes and
use unlabelled edges to uniformly represent data and control
dependence. AUGs are multigraphs that capture actions and data
entities in nodes and distinguish different kinds of control/data
dependence (including exceptional and synchronized flow)
in labelled edges. This precisely differentiates usages in our
mining and detection algorithms and improves scalability.

In addition to the detectors we compare to, there are
detectors for various languages. For C, detectors include: PR-
MINER [8] uses frequent-itemset mining to detect missing
method calls. COLIBRI/ML [9] re-implements PR-MINER using
Formal Concept Analysis [23]. RGJ07 [11] uses frequent-
itemset mining to detect missing call-argument conditions.
CHRONICLER [36] mines frequent call-precedence relations to
detect call-order violations. AX09 [13] uses push-down model
checking to detect missing error handling.

CAR-MINER [14] is a detector for C++ and Java, specialized
in detecting wrong error handling. ALATTIN [15] is a detector
for Java that detects missing null checks, missing value or state
conditions not involving literals, and missing calls required in
checks. DROIDASSIST [17] is a detector for Dalvik Bytecode. It
uses a Hidden Markov Model to compute the likelihood of call
sequences to detect missing, misplaced, and redundant method
calls; no evaluation was presented in the paper.

VIII. CONCLUSION

In this paper, we investigate whether the performance of API-
misuse detectors can be improved. We design MUDETECT to
build on the strengths, and address many of the problems,
of existing detectors. We systematically design a ranking
strategy that effectively ranks true positives among MUDETECT’s
top findings. We compare the performance of MUDETECT

to four state-of-the-art detectors. Our evaluation shows that
MUDETECT clearly outranks these detectors, with recall upper
bound of 72.5%, recall of 20.9%, and precision of 21.9%
in the typical per-project setting. In a cross-project setting,
MUDETECT’s recall reaches 42.2% and its precision 33.0%. We
also analyze the remaining false negatives and false positives
to help researchers identify further improvement opportunities.

ACKNOWLEDGEMENTS

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF) within the
Software Campus project Eko, grant no. 01IS12054, by the
DFG as part of CRC 1119 CROSSING, and by the Hessen
State Ministry for Higher Education, Research and the Arts
(HMWK) within CRISP. The authors assume responsibility for
the paper content.

REFERENCES

[1] M. Monperrus and M. Mezini, “Detecting missing method calls as viola-
tions of the majority rule,” ACM Transactions on Software Engineering
and Methodology, vol. 22, no. 1, pp. 1–25, 2013.

[2] J. Sushine, J. D. Herbsleb, and J. Aldrich, “Searching the state space: A
qualitative study of API protocol usability,” in Proceedings of the 23rd

IEEE International Conference on Program Comprehension, ser. ICPC
’15. IEEE Computer Society Press, 2015, pp. 82–93.

[3] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory love Android: An analysis of Android
SSL (in)security,” in Proceedings of the 19th ACM Conference on
Computer and Communications Security, ser. CCS ’12. ACM Press,
2012, pp. 50–61.

[4] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in Android applications,” in Proceedings
of the Conference on Computer & Communications Security, ser. CCS’13.
ACM Press, 2013, pp. 73–84.

[5] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “”Jumping through hoops”:
Why do developers struggle with cryptography APIs?” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE’16.
ACM Press, 2016.

[6] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating SSL
certificates in non-browser software,” in Proceedings of the 19th ACM
Conference on Computer and Communications Security, ser. CCS ’12.
ACM Press, 2012, pp. 38–49.

[7] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“MUBench: A benchmark for API-misuse detectors,” in Proceedings of
the 13th Working Conference on Mining Software Repositories, ser. MSR
’16. ACM Press, 2016.

[8] Z. Li and Y. Zhou, “PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software code,”
in Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. ESEC/FSE ’13. ACM Press,
2005, pp. 306–315.

[9] C. Lindig, “Mining patterns and violations using concept analysis,”
Universität des Saarlandes, Saarbrücken, Germany, Tech. Rep., 2007.

[10] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the 6th ACM Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ser. ESEC/FSE ’07. ACM
Press, 2007, pp. 35–44.

[11] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static specification
inference using predicate mining,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, ser. PLDI ’07. ACM Press, 2007, pp. 123–134.

[12] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the 7th ACM Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ser. ESEC/FSE ’09. ACM Press,
2009, pp. 383–392.

[13] M. Acharya and T. Xie, “Mining API error-handling specifications from
source code,” in Proceedings of the 12th International Conference on
Fundamental Approaches to Software Engineering: Held As Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2009, ser. FASE ’09. Springer-Verlag GmbH, 2009, pp. 370–384.

[14] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09. IEEE Computer
Society Press, 2009, pp. 496–506.

[15] ——, “Alattin: Mining alternative patterns for detecting neglected condi-
tions,” in Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’09. IEEE Computer
Society Press, 2009, pp. 283–294.

[16] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” Automated Software Engineering, vol. 18, no. 3-4, pp.
263–292, 2011.

[17] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recommending
API usages for mobile apps with Hidden Markov Model,” in Proceedings
of the 30th ACM/IEEE International Conference on Automated Software

Engineering, ser. ASE ’15. IEEE Computer Society Press, 2015, pp.
795–800.

[18] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static API-misuse detectors,” IEEE Transactions
on Software Engineering, 2018.

[19] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov, “How good
are the specs? A study of the bug-finding effectiveness of existing Java
API specifications,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’16. ACM
Press, 2016, pp. 602–613.

[20] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for. The impact of information sources on
code security,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, 2016.

[21] “MUBench,” 2017. [Online]. Available: https://github.com/stg-tud/
MUBench/

[22] “Artifact Page,” 2019. [Online]. Available: http://www.st.informatik.
tu-darmstadt.de/artifacts/mudetect/

[23] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, 1st ed. Springer-Verlag New York, Inc., 1997.

[24] T. Ramraj and R. Prabhakar, “Frequent subgraph mining algorithms – a
survey,” Procedia Computer Science, vol. 47, pp. 197–204, 2015.

[25] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Accurate and efficient structural characteristic feature extraction
for clone detection,” in Proceedings of the 12th International Conference
on Fundamental Approaches to Software Engineering, ser. FASE ’09.
Springer-Verlag, 2009, pp. 440–455.

[26] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A
language and infrastructure for analyzing ultra-large-scale software
repositories,” in Proceedings of the 35th International Conference on
Software Engineering, ser. ICSE ’13. IEEE Computer Society Press,
2013, pp. 422–431.

[27] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Learning API
usages from bytecode : A statistical approach,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
ACM Press, 2016.

[28] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[29] S. Radevski, H. Hata, and K. Matsumoto, “Towards building API usage
example metrics,” in Proceedings of the 23rd International Conference
on Software Analysis, Evolution, and Reengineering, ser. SANER ’16.
IEEE Computer Society Press, 2016, pp. 619–623.

[30] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from Stack Overflow,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. ACM Press, 2016,
pp. 392–403.

[31] U. Dekel and J. D. Herbsleb, “Improving API documentation usability
with knowledge pushing,” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09. IEEE Computer
Society Press, 2009, pp. 320–330.

[32] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in Proceedings of the 7th ACM Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ser.
ESEC/FSE ’09. ACM Press, 2009, pp. 213–222.

[33] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in Proceedings of the 27th International Confer-
ence on Software Engineering. IEEE Computer Society Press, 2005,
pp. 117–125.

[34] M. Pradel and T. R. Gross, “Leveraging test generation and specification
mining for automated bug detection without false positives,” in Proceed-
ings of the 34th International Conference on Software Engineering, ser.
ICSE ’12. IEEE Computer Society Press, 2012, pp. 288–298.

[35] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically checking
API protocol conformance with mined multi-object specifications,” in Pro-
ceedings of the 34th International Conference on Software Engineering,
ser. ICSE ’12. IEEE Computer Society Press, 2012, pp. 925–935.

[36] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive
inference of function precedence protocols,” in Proceedings of the 29th

International Conference on Software Engineering, ser. ICSE ’07. IEEE
Computer Society Press, 2007, pp. 240–250.

