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ABSTRACT
Over the last few years, researchers proposed a multitude
of automated bug-detection approaches that mine a class of
bugs that we call API misuses. Evaluations on a variety
of software products show both the omnipresence of such
misuses and the ability of the approaches to detect them.

This work presents MuBench, a dataset of 89 API mis-
uses that we collected from 33 real-world projects and a sur-
vey. With the dataset we empirically analyze the prevalence
of API misuses compared to other types of bugs, finding that
they are rare, but almost always cause crashes. Further-
more, we discuss how to use it to benchmark and compare
API-misuse detectors.

CCS Concepts
•Software and its engineering→ Software defect anal-
ysis; Software post-development issues;
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1. INTRODUCTION
Over the last 15 years, researchers proposed a multitude of

automated bug-detection approaches [13]. These approaches
commonly mine API usage patterns from source code and
find rare violations of those, assuming that they often corre-
spond to bugs. We call such violations API misuses. For ex-
ample, one API misuse is when a developer forgets to close a
resource. Evaluations on a variety of software projects show
both the omnipresence of API misuses and the ability of the
detectors to find them [9,14].

However, to the best of our knowledge, no work empiri-
cally analyzes the prevalence of API misuses compared to
other types of bugs or shows which kinds of misuses a par-
ticular technique detects. This makes it hard to judge the
impact of the detectors in general, to assess their capabili-
ties, and to compare them with one another. As a first step
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Source Total Size Reviewed Misuse Crash

BugClassify 2,914 294 26 16
Defects4J 357 357 14 12
iBugs 390 390 56 ?
QACrashFix 24 24 15 15

SourceForge 130 130 13 6
GitHub 2,660 78 3 2

Survey 17 17 12 5

Total 6,491 1,189 89 61

Table 1: API Misuses by Source

towards these goals, we present MuBench, a dataset of API
misuses that can be used to benchmark and compare API-
misuse detectors. We explored existing bug datasets, mined
projects from SourceForge and GitHub, and conducted
a survey to collect 89 instances of API misuses. From this
sample, we created a taxonomy of API misuses and a dataset
with detailed metadata about each instance. We find that
61 of the misuses (69.5%) cause crashes, which stresses the
importance of mitigating this kind of bug.

MuBench is publicly available on GitHub.1 We chose this
platform to enable researchers to contribute to the bench-
mark and to uniquely reference the particular benchmark
version they use in their work. We encourage researchers to
use and extend MuBench to achieve replicability of evalu-
ations and comparability of API-misuse detectors.

2. FINDING API MISUSES
An API misuse is an API usage that violates the API’s

contract, as opposed to one that does not comply with the
client code’s logic. For example, not closing a stream is a
misuse, while querying the wrong database column is not.
Based on this intuition, we used our best judgement to iden-
tify API misuses, following three independent approaches:
(1) We analyzed existing bug datasets, filtering for API
misuses (Section 2.1), (2) we analyzed SourceForge and
GitHub for misuses of the Java Cryptography Extension
(JCE) APIs (Section 2.2), and (3) we conducted a survey,
asking developers for problems caused by misuse of Java
APIs (Section 2.3). Table 1 summarizes the results.

2.1 Existing Bug Datasets
Many researchers created bug datasets to evaluate their

approaches for problems such as defect prediction or patch
generation. These datasets encompass bugs reported in the

1https://github.com/stg-tud/MUBench, last checked Feb 19, 2016
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respective project’s issue tracker or fixed in its version-control
system. Since API misuses are a subset of general software
bugs, we manually reviewed three such datasets to identify
instances of misuses. During this review, we assessed the
prevalence of misuse-related bugs compared to other bugs.

BugClassify. This dataset by Herzig et al. [6] consists
of 7,401 tickets from the issue trackers of five Open Source
projects. They manually classified 2,914 of these tickets as
reporting bugs. We randomly selected 10% of those tickets
for each of the five projects, a total of 294 tickets, from
which we identified 26 API misuses (8.8%). We found that
most tickets report logic errors, such as wrong calculations
or missing handling of certain cases. Other categories are
mistakes in configuration files and multi-threading issues.

Defects4J. This defect dataset by Just et al. [7] consists
of 357 source-code bugs that were fixed in a single commit,
reported in an issue tracker, and had at least one accom-
panying testcase that failed before and passed after the fix.
From all of these cases, we identified 14 API misuses (3.9%).

iBugs. This dataset by Dallmeier and Zimmerman [2] con-
sists of 390 fixing commits from three Open Source projects.
The commits were selected through heuristics on the com-
mit messages. From all of these cases, we identified 56 API
misuses (15.1%).2 Many of the other issues were unrelated
to API usage and often even unrelated to source code.

QACrashFix. This dataset by Gao et al. [4] consists of 24
source-code bugs from 16 GitHub projects. The bugs were
selected by, first, mining the issue trackers of the projects for
crash reports related to the Android API and, second, re-
viewing the resulting candidates manually. From all of these
cases, we identified 15 API misuses (62.5%). Interestingly,
a very large part of these crash bugs are API misuses.

2.2 Java Cryptography Extension APIs
Previous work shows that developers often misuse crypto-

graphic APIs [3,5,8] and that they would welcome help using
these APIs correctly [10]. To add examples of such critical
misuses to MuBench, we mined bug-fixing changes from
projects on SourceForge and GitHub as follows: (1) We
identified projects with at least 10 stars that use the JCE
API, i.e., whose latest source code contains imports from the
javax.crypto package. (2) For each fix, we extracted the
actual source-code change [12] and analyzed the changes to
the abstract syntax tree [11] to find changes to the usages
of a JCE type. (3) We manually reviewed the candidates.

Using this approach, we extracted 130 candidates from
SourceForge, from which we identified 15 misuses, and
2660 candidates from GitHub, from which we reviewed a
random sample of 78 and identified 3 misuses, so far.

2.3 Survey
All bugs we reviewed so far were committed to version-

control systems. Since we find that many API misuses lead
to obviously spurious behavior (such as exceptions), we hy-
pothesize that many are already ruled out during develop-
ment, e.g., through testing. Thus, developers might face
many misuses that we cannot find by reviewing bug datasets.

Following our hypothesis, we conducted a survey,3 which
we promoted via colleagues, friends, and Twitter, to reach

2Due to problems identifying the meta data from the old dataset, we
did not add these misuses to MuBench yet.
3http://goo.gl/forms/3hua7LOFVJ, last checked on Feb 15, 2016

1 source:

2 name: BugClassify

3 url: https://www.st.cs.uni-saarland.de/softevo//bugclassify/

4 project:

5 name: Mozilla Rhino

6 url: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

7 report: https://bugzilla.mozilla.org/show_bug.cgi?id=286251

8 description: >

9 IRFactory.initFunction() is called twice along one possible execution path,

10 which causes an infinite loop.

11 crash: yes

12 internal: yes

13 api:

14 - org.mozilla.javascript.IRFactory

15 characteristics:

16 - superfluous call

17 pattern:

18 - single object

19 challenges:

20 - path dependent

21 fix:

22 description: >

23 Remove duplicated call.

24 commit: https://github.com/mozilla/rhino/commit/ed00a2e83de1e768918604a65def097...

25 files:

26 - name: src/org/mozilla/javascript/Parser.java

Figure 1: Meta Data of API Misuse rhino-286251

developers. Within 9 days, we collected 16 responses nam-
ing 17 distinct API misuses. We identified only 3 of these
misuses in our review, which supports our hypothesis.

Interestingly, many participants pointed out multiple fixes
for misuses. For example, to ensure a resource gets closed,
we can call close(), or call IOUtils.closeQuietly() from
Apache Commons, or use the try-with-resources statement.
This suggests that while there may be multiple ways to mis-
use APIs, there are also multiple ways to use it correctly.

We added all examples to our dataset. For each, we pro-
vide a Java file with examples of the misuse and alternative
fixes. We publish the survey responses as part of MuBench.

2.4 Results
In total, we reviewed 1,189 candidates from 7 sources. We

identified 89 API misuses from 33 projects and the survey.
From these, 61 (69.3%) cause crashes. We added the misuses
from all sources to MuBench.4

If we consider BugClassify, Defects4J, and QACrash-
Fix, for which we know the exact number of bugs they
contain, we find that only 6.6% of all bugs are API mis-
uses. However, many of those misuses cause crashes (95.5%),
which stresses the importance of mitigating this kind of bug.

We found that many of the fixing commits resolve multiple
misuses. Also many commits contain more changes than the
fix itself, such as refactorings or reformatting, which makes
isolating the actual misuse more difficult.

3. THE API MISUSE DATASET
For each of the misuses we identified in our data collection,

we provide a file with meta data in YAML format.5 Figure 1
shows an example of such a file for the misuse rhino-286251.

The source designates where we found the misuse exam-
ple. The name either identifies one of the existing datasets
we analyzed (Section 2.1), our survey (Section 2.3), or the
SourceForge or GitHub project (Section 2.2). We pro-
vide a url to the original bug dataset, if applicable.

The project designates where the misuse occurred. We
provide the project’s name and url. For misuses from the
survey, no project information is provided.

The report designates a ticket—usually in the project’s
issue tracker—reporting the misuse. From this report, the
4We still review the findings from GitHub. They will be added soon.
5http://yaml.org/, last checked on Feb 10, 2016



fix, and respective API documentation, we assemble a de-

scription of the misuse. Furthermore, we document whether
the misuse caused the code to crash and whether the mis-
used API is internal to the project (as opposed to from an
external library). Finally, we list all types whose api is part
of either the misuse or the respective correct usage.

To classify the misuse, we provide its characteristics.
We drafted a respective taxonomy from the changes required
to turn the misuse into a correct usage. Each misuse has one
or multiple of the following characteristics:

superfluous call - the misuse contains a superfluous call.
missing call - the misuse misses a call.
wrong call - the misuse calls the wrong method. We distin-

guish this from both a superfluous and a missing call, if the
present call generally shows the right intent. For example,
when File.mkdir() is called instead of File.mkdirs().

missing precondition - (part of) the misuse needs a guard.
We differentiate three cases: (1) a predicate check on an
object, e.g., isEmpty(), or (2) a null check on a reference,
before calling a method on it or passing it to a method
that expects a non-null parameter, or (3) a value con-

straint check, e.g., that the number passed to Prepared-

Statement.setFetchSize() must be smaller or equal to
the number passed to PreparedStatement.setMaxRows(),
if the number passed to setMaxRows() is larger than 0.

missing catch - the misuse does not handle a particular
exception or any exception at all.

missing finally - (part of) the misuse should happen in a
finally block, regardless of whether there already is such
a block or even a try statement.

ignored result - the misuse ignores the return value of a
call, e.g., the result of a pure method.

Since API-misuse detectors mine usage patterns and iden-
tify violations of those, they are limited by the usages they
can extract. We currently distinguish the following kinds:

single node - the misuse consists of a single call, e.g., if
Files.write() is called without specifying what to do if
the file does not exist (optional parameter).

single object - the usage involves only a single object with
multiple calls, e.g., how to open, use, and close a stream.

multiple object - the usage involves multiple objects, e.g.,
how to use an Iterator created from a Collection.

A survey by Robillard et al. [13] presents more fine-grained
characteristics of the patterns approaches handle. We plan
to build a taxonomy from these and add it to our benchmark.

During our reviews, we found special challenges for misuse
detection that are orthogonal to the above characteristics:

multi-method - the misuse spreads over multiple methods,
e.g., a stream is closed by a callee and later accessed by
the caller. Detectors need to consider called methods.

multiple usages - the misuse interleaves with other usages
of the same type, e.g., two buttons are configured side by
side. Detectors need to separate the distinct usages.

path dependent - the misuse occurs only along a particular
execution path, e.g., a required call happens in the then

branch, but not in the else branch. Detectors need to
decide whether there is such a path or not.

Finally, we describe the fix for the misuse. As for the
misuse itself, we provide a short description that we com-
piled from available patches and API documentation and a
URL to the fixing commit, if we could find it from the report.
Since the commits sometimes change files unrelated to the

misuse, we also list the related files, including, if possible,
a direct link to the diff of the fix in that file.

4. USING THE BENCHMARK
With the current dataset, we assess the prevalence of API

misuses compared to other bugs, as discussed in Section 2.4.
We publish the scripts that generate the reported statistics
and more, such as the distribution of different kinds of mis-
uses and the frequency of detection challenges.

Our main motivation to create MuBench is the evalua-
tion of API-misuse detectors. In the past, researchers evalu-
ated their approaches on a collection of real-world projects.
Such evaluations show that the detectors find misuses in real
code and how many false positives they produce. Our tax-
onomy of API misuses now allows researchers to addition-
ally assess which types of misuses a detector conceptually
covers. For example, we now realize that, to the best of
our knowledge, there is no detector that identifies superflu-
ous calls. Furthermore, our benchmark allows—for the first
time—measuring how many misuses a detector misses.

To use the dataset as a benchmark for API-misuse detec-
tors, the source code of each misuse is needed, to run the
respective analyses on. Ideally, we want to assess two as-
pects of a detector: (1) its ability to detect a certain misuse
in the context of the code it occurs in and (2) its ability
to detect a certain misuse in general. As code surrounding
or intertwined with a usage may add considerable noise, a
detector’s general ability to detect a certain misuse does not
imply it is able to detect that misuse in any context. The
other way around is also true. Only because an approach
misses a misuse in a specific context does not mean it is inca-
pable of detecting this misuse at all. To address (1), we plan
to extract the original occurrence of the misuse, i.e., the orig-
inal code of all classes with at least one method contributing
to the misuse. The commit URL from MuBench enables us
to automate this. Subsequently, we need to ensure that the
example is parseable, such that standard source-code pro-
cessors can work with it. To address (2), we plan to extract
a minimal example of the misuse, i.e., we strip the previous
example of all code elements unrelated to the misuse.

In addition, we will extract fixed version of both examples,
to add negative datapoints to the evaluation, i.e., cases in
which misuses detectors should not report anything. This
allows us to assess whether detectors find certain misuses
only accidentally, because such a detector would likely iden-
tify the misuse also in the fixed version. For example, a
detector that ignores control flow might correctly detect a
misuse where a method is called twice, but also reports a
fixed version where the method is called once per path.

We note that Dallmeier et al. [2] present an interesting ap-
proach to classify bugs, using the set of AST nodes changed
by the fix. Future work should compare the results of such
an automated approach to our manual classification.

5. EXTENDING THE BENCHMARK
Due to the high manual effort of reviewing bug reports, we

evaluated only part of the BugClassify and the GitHub
candidates. Now that we established the data format and
the classification rules, it is straightforward to review the
remaining reports. We will continually do this over time.

As we show in Section 2.3, developers face more problems
with API misuse than we can find in issue trackers or code



repositories. To find more of such examples, we plan to
promote our survey to a broader audience. In addition, we
want to mine Q&A sites for API-misuse related questions.
We believe that such a study could help to identify further
common API misuses, as well as to assess how commonly
developers face API misuses we already know about.

We publish a meta-data template as part of MuBench
and encourage other researchers to contibute descriptions of
their findings directly on GitHub. Alternatively, examples
can still be submitted to our survey questionnaire.

6. LIMITATIONS
Apart from the 16 misuses of the JCE API, which where

reviewed by two of the authors, the misuses in MuBench
were reviewed solely by the first author. To ensure quality,
we publish the dataset and encourage others to review it.

Our dataset encompasses 77 API misuses from real-world
projects and 12 misuses from our survey. This number is
small, compared to other benchmark datasets. However, we
focus on a very specific class of bugs and provide detailed
information about every misuse. Now that the concept is in
place, we can continuously enlarge the dataset. We encour-
age other researchers to contribute to it as well.

We identified misuses from 33 projects. They may not
be representative for API misuses in general. However, we
found that a relatively small number of criteria suffices to
characterize all these misuses. We see this as an indicator
that we covered a large fraction of the different kinds of API
misuses. The classification enables us, for the first time, to
gather empirical data about API misuses. We expect that
as the benchmark increases in size, it will also closely mirror
the actual distribution of the different kinds of API misuses.

Another limitation of MuBench is that the instances we
identified may not be representative for the code misuses
appear in. For example, a certain misuse might often be
distributed over multiple methods, while the examples we
found only show occurrences in a single method or vice versa.
Note that we do not intent for MuBench to replace evalua-
tion on real-world code. We see it as an additional validation
point to assess the kinds of API misuses covered by a detec-
tor and to enable comparison of different approaches.

7. RELATED DATASETS
Several datasets of software bugs have been created in the

past [2, 6, 7]. These datasets contain instances of arbitrary
software bugs, identified heuristically or manually. We used
them as sources for the identification of API misuses.

BegBunch [1] is a bug-detection benchmark of C pro-
grams. It provides a dataset to measure tool accuracy, w.r.t
finding buffer overflows, memory/pointer bugs, integer over-
flows, and faulty format strings. Furthermore, it provides a
second dataset to measure scalability of detectors and tool-
ing to assess detectors’ performance on either. The goal of
our work is a similar infrastructure for API-misuse bugs in
Java programs. MuBench is a first step in this direction.

8. CONCLUSION
In this work, we present MuBench, a dataset to bench-

mark API-misuse detectors. The dataset provides detailed
meta data about 89 API misuses from 33 projects and a
survey. We draft a taxonomy of API misuses. We believe
that MuBench will advance the state-of-the-art in misuse

detection, providing insights about conceptual capabilities
of tools and false negatives in their application.
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